1
|
Rossi A, Simeoli C, Pivonello R, Salerno M, Rosano C, Brunetti B, Strisciuglio P, Colao A, Parenti G, Melis D, Derks TGJ. Endocrine involvement in hepatic glycogen storage diseases: pathophysiology and implications for care. Rev Endocr Metab Disord 2024; 25:707-725. [PMID: 38556561 PMCID: PMC11294274 DOI: 10.1007/s11154-024-09880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Hepatic glycogen storage diseases constitute a group of disorders due to defects in the enzymes and transporters involved in glycogen breakdown and synthesis in the liver. Although hypoglycemia and hepatomegaly are the primary manifestations of (most of) hepatic GSDs, involvement of the endocrine system has been reported at multiple levels in individuals with hepatic GSDs. While some endocrine abnormalities (e.g., hypothalamic‑pituitary axis dysfunction in GSD I) can be direct consequence of the genetic defect itself, others (e.g., osteopenia in GSD Ib, insulin-resistance in GSD I and GSD III) may be triggered by the (dietary/medical) treatment. Being aware of the endocrine abnormalities occurring in hepatic GSDs is essential (1) to provide optimized medical care to this group of individuals and (2) to drive research aiming at understanding the disease pathophysiology. In this review, a thorough description of the endocrine manifestations in individuals with hepatic GSDs is presented, including pathophysiological and clinical implications.
Collapse
Affiliation(s)
- Alessandro Rossi
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Department of Translational Medicine, Section of Pediatrics, University of Naples "Federico II", Naples, Italy.
| | - Chiara Simeoli
- Dipartmento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, University of Naples "Federico II", Naples, Italy
| | - Rosario Pivonello
- Dipartmento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, University of Naples "Federico II", Naples, Italy
| | - Mariacarolina Salerno
- Department of Translational Medicine, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Carmen Rosano
- Department of Translational Medicine, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Barbara Brunetti
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Section of Pediatrics, University of Salerno, Baronissi, Italy
| | - Pietro Strisciuglio
- Department of Translational Medicine, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Annamaria Colao
- Dipartmento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia ed Andrologia, University of Naples "Federico II", Naples, Italy
| | - Giancarlo Parenti
- Department of Translational Medicine, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Section of Pediatrics, University of Salerno, Baronissi, Italy
| | - Terry G J Derks
- Section of Metabolic Diseases, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Brouwers MCGJ, Cassiman D. Rare monogenic causes of steatotic liver disease masquerading as MASLD. J Hepatol 2024; 80:e252-e253. [PMID: 38458321 DOI: 10.1016/j.jhep.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Affiliation(s)
- Martijn C G J Brouwers
- Division of Endocrinology and Metabolic Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands; CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands.
| | - David Cassiman
- Department Chrometa, KU Leuven, Leuven, Belgium; Department of Gastroenterology-Hepatology and Metabolic Centre, University Hospitals Leuven, Belgium
| |
Collapse
|
3
|
Chen H, Buziau AM, Rentería ME, Simons PIHG, Brouwers MCGJ. Fructose intake from sugar-sweetened beverages is associated with a greater risk of hyperandrogenism in women: UK Biobank cohort study. Eur J Endocrinol 2024; 190:104-112. [PMID: 38291515 DOI: 10.1093/ejendo/lvae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE To assess the association between fructose consumption and serum sex hormone-binding globulin (SHBG), (free) testosterone, and risk of hyperandrogenism in a population-based cohort. DESIGN An observational and genetic association study in participants of the UK Biobank (n = 136 384 and n = 383 392, respectively). METHODS We assessed the relationship of (1) the intake of different sources of fructose (ie, total, fruit, fruit juice, and sugar-sweetened beverages [SSBs]) and (2) rs2304681 (a missense variant in the gene encoding ketohexokinase, used as an instrument of impaired fructose metabolism), with SHBG, total and free testosterone levels, and risk of hyperandrogenism (free androgen index >4.5). RESULTS The intake of total fructose and fructose from fruit was associated with higher serum SHBG and lower free testosterone in men and women and lower risk of hyperandrogenism in women. In contrast, fructose intake from SSB (≥10 g/day) was associated with lower SHBG in men and women and with higher free testosterone levels and risk of hyperandrogenism in women (odds ratio [OR]: 1.018; 95% confidence interval [CI]: 1.010; 1.026). Carriers of the rs2304681 A allele were characterized by higher circulating SHBG (both men and women), lower serum free testosterone (women), and a lower risk of biochemical hyperandrogenism (OR: 0.997, 95% CI: 0.955; 0.999; women) and acne vulgaris (OR: 0.975, 95% CI: 0.952; 0.999; men and women combined). CONCLUSIONS The consumption of ≥10 g/day fructose from SSB, corresponding to ≥200 mL serving, is associated with a 2% higher risk of hyperandrogenism in women. These observational data are supported by our genetic data.
Collapse
Affiliation(s)
- Huadong Chen
- Department of Internal Medicine, Division of Endocrinology and Metabolic Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Amée M Buziau
- Department of Internal Medicine, Division of Endocrinology and Metabolic Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Miguel E Rentería
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - Pomme I H G Simons
- Department of Internal Medicine, Division of Endocrinology and Metabolic Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Internal Medicine, Elkerliek Hospital, Helmond, The Netherlands
| | - Martijn C G J Brouwers
- Department of Internal Medicine, Division of Endocrinology and Metabolic Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Simons PIHG, Valkenburg O, van de Waarenburg MPH, van Greevenbroek MMJ, Kooi ME, Jansen JFA, Schalkwijk CG, Stehouwer CDA, Brouwers MCGJ. Serum sex hormone-binding globulin is a mediator of the association between intrahepatic lipid content and type 2 diabetes: the Maastricht Study. Diabetologia 2023; 66:213-222. [PMID: 36114428 PMCID: PMC9729158 DOI: 10.1007/s00125-022-05790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Serum sex hormone-binding globulin (SHBG) has been proposed to act as a hepatokine that contributes to the extrahepatic complications observed in non-alcoholic fatty liver disease (NAFLD). However, it remains uncertain whether serum SHBG mediates the association between intrahepatic lipids (IHL) and type 2 diabetes. Therefore, we studied whether, and to what extent, serum SHBG mediates the association between IHL content and type 2 diabetes. METHODS We used cross-sectional data from the Maastricht Study (n=1554), a population-based cohort study with oversampling of individuals with type 2 diabetes. Type 2 diabetes status was assessed by oral glucose tolerance test, and IHL content was measured using 3T Dixon MRI. Mediation analyses were performed to assess the role of serum SHBG in mediating the association between IHL content and type 2 diabetes. RESULTS IHL content was significantly associated with type 2 diabetes in women and men (OR 1.08 [95% CI 1.04, 1.14] and OR 1.12 [95% CI 1.08, 1.17], respectively). Serum SHBG significantly mediated the association between IHL content and type 2 diabetes. The contribution of serum SHBG was higher in women (OR 1.04 [95% CI 1.02, 1.07]; proportion mediated 50.9% [95% CI 26.7, 81.3]) than in men (OR 1.02 [95% CI 1.01, 1.03]; proportion mediated 17.2% [95% CI 9.6, 27.6]). Repeat analyses with proxies of type 2 diabetes and adjustment for covariates did not substantially affect the results. CONCLUSIONS/INTERPRETATION In this large-scale population-based cohort study, serum SHBG was found to be a mediator of the association between IHL content and type 2 diabetes. These findings extend our understanding of the potential mechanisms by which NAFLD is a risk factor for type 2 diabetes, and further elaborate on the role of SHBG as a hepatokine.
Collapse
Affiliation(s)
- Pomme I H G Simons
- Department of Internal Medicine, Division of Endocrinology and Metabolic Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Olivier Valkenburg
- Department of Reproductive Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Marjo P H van de Waarenburg
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Marleen M J van Greevenbroek
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - M Eline Kooi
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Electrical Engineering, University of Eindhoven, Eindhoven, the Netherlands
| | - Casper G Schalkwijk
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| | - Coen D A Stehouwer
- Laboratory for Metabolism and Vascular Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, Division of General Internal Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Martijn C G J Brouwers
- Department of Internal Medicine, Division of Endocrinology and Metabolic Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands.
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
5
|
Brouwers MCGJ. Fructose 1-phosphate, an evolutionary signaling molecule of abundancy. Trends Endocrinol Metab 2022; 33:680-689. [PMID: 35995682 DOI: 10.1016/j.tem.2022.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
Abstract
Evidence is accumulating that specifically fructose exerts adverse cardiometabolic effects in humans. Recent experimental studies have shown that fructose not only serves as a substrate for, among others, intrahepatic lipid formation, but also has a signaling function. It is postulated that fructose 1-phosphate (F1-P) has evolved as a signaling molecule of abundancy that stimulates nutrient absorption, lipid storage, and reproduction. Such a role would provide an explanation for why fructose contributes to the pathogenesis of evolutionary mismatch diseases, including nonalcoholic fatty liver disease (NAFLD), cardiovascular disease, polycystic ovary syndrome (PCOS), and colorectal cancer, in the current era of nutritional abundance. It is anticipated that reducing F1-P, by either pharmacological inhibition of ketohexokinase (KHK) or societal measures, will mitigate the risk of these diseases.
Collapse
Affiliation(s)
- Martijn C G J Brouwers
- Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Centre, Maastricht, The Netherlands; CARIM School for Cardiovascular Disease, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|