1
|
Li S, Dite GS, MacInnis RJ, Bui M, Nguyen TL, Esser VFC, Ye Z, Dowty JG, Makalic E, Sung J, Giles GG, Southey MC, Hopper JL. Causation and familial confounding as explanations for the associations of polygenic risk scores with breast cancer: Evidence from innovative ICE FALCON and ICE CRISTAL analyses. Genet Epidemiol 2024; 48:401-413. [PMID: 38472646 PMCID: PMC11588973 DOI: 10.1002/gepi.22556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
A polygenic risk score (PRS) combines the associations of multiple genetic variants that could be due to direct causal effects, indirect genetic effects, or other sources of familial confounding. We have developed new approaches to assess evidence for and against causation by using family data for pairs of relatives (Inference about Causation from Examination of FAmiliaL CONfounding [ICE FALCON]) or measures of family history (Inference about Causation from Examining Changes in Regression coefficients and Innovative STatistical AnaLyses [ICE CRISTAL]). Inference is made from the changes in regression coefficients of relatives' PRSs or PRS and family history before and after adjusting for each other. We applied these approaches to two breast cancer PRSs and multiple studies and found that (a) for breast cancer diagnosed at a young age, for example, <50 years, there was no evidence that the PRSs were causal, while (b) for breast cancer diagnosed at later ages, there was consistent evidence for causation explaining increasing amounts of the PRS-disease association. The genetic variants in the PRS might be in linkage disequilibrium with truly causal variants and not causal themselves. These PRSs cause minimal heritability of breast cancer at younger ages. There is also evidence for nongenetic factors shared by first-degree relatives that explain breast cancer familial aggregation. Familial associations are not necessarily due to genes, and genetic associations are not necessarily causal.
Collapse
Affiliation(s)
- Shuai Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneCarltonVictoriaAustralia
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- Precision Medicine, School of Clinical Sciences at Monash HealthMonash UniversityClaytonVictoriaAustralia
- Murdoch Children's Research InstituteRoyal Children's HospitalParkvilleVictoriaAustralia
| | - Gillian S. Dite
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneCarltonVictoriaAustralia
- Genetic Technologies Ltd.FitzroyVictoriaAustralia
| | - Robert J. MacInnis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneCarltonVictoriaAustralia
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneVictoriaAustralia
| | - Minh Bui
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneCarltonVictoriaAustralia
| | - Tuong L. Nguyen
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneCarltonVictoriaAustralia
| | - Vivienne F. C. Esser
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneCarltonVictoriaAustralia
| | - Zhoufeng Ye
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneCarltonVictoriaAustralia
| | - James G. Dowty
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneCarltonVictoriaAustralia
| | - Enes Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneCarltonVictoriaAustralia
| | - Joohon Sung
- Division of Genome and Health Big Data, Department of Public Health Sciences, Graduate School of Public HealthSeoul National UniversitySeoulKorea
- Genomic Medicine InstituteSeoul National UniversityEuigwahakgwan #402, Seoul National University College of Medicine, 103, Daehak‐ro, Jongno‐guSeoulSouth Korea
- Institute of Health and EnvironmentSeoul National University1st GwanakRoSeoulSouth Korea
| | - Graham G. Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneCarltonVictoriaAustralia
- Precision Medicine, School of Clinical Sciences at Monash HealthMonash UniversityClaytonVictoriaAustralia
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneVictoriaAustralia
| | - Melissa C. Southey
- Precision Medicine, School of Clinical Sciences at Monash HealthMonash UniversityClaytonVictoriaAustralia
- Cancer Epidemiology DivisionCancer Council VictoriaMelbourneVictoriaAustralia
- Department of Clinical PathologyThe University of MelbourneParkvilleVictoriaAustralia
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global HealthThe University of MelbourneCarltonVictoriaAustralia
| |
Collapse
|
2
|
Wu Z, Dai Z, Feng Z, Qiu Y, Zhu Z, Xu L. Genome-wide methylation association study in monozygotic twins discordant for curve severity of adolescent idiopathic scoliosis. Spine J 2024:S1529-9430(24)01106-9. [PMID: 39515527 DOI: 10.1016/j.spinee.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND CONTEXT Emerging evidence suggests that abnormal DNA methylation patterns may play a role in the progression of adolescent idiopathic scoliosis (AIS). However, the mechanisms underlying the influence of DNA methylation on curve severity remain largely unknown. PURPOSE To characterize the DNA methylation profiles associated with the curve severity of AIS. STUDY DESIGN Retrospective study with prospectively collected clinical data and blood samples. METHODS A total of 7 AIS monozygotic twin pairs discordant for curve severity were included. Genome-wide methylation profile from blood samples were quantified by Illumina Infinium MethylationEPIC BeadChip (850K chip). Cell type composition of the samples was estimated by RefbaseEWAS method. Differentially methylated CpG sites were identified through comparison between patients with low and high Cobb angle. We also performed a gene-based collapsing analysis using mCSEA by aggregating the CpG sites based on promoter region. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed using clusterProfiler package. RESULTS Genome-wide DNA methylation analysis identified multiple differentially methylated positions across the genome. Gene-based collapsing analysis identified 212 differentially methylated genes (FDR adjusted p<0.05), most of which (186/212) were hypermethylated in the group with high Cobb angle. Some of the identified genes were well-documented in AIS literature, such as TBX1, PAX3 and LBX1. Functional enrichment analysis revealed that the differentially methylated genes (DMGs) were involved in pattern specification process, skeletal development, muscle function, neurotransmission and several signaling pathways (cAMP, Wnt and prolactin). CONCLUSIONS The study represents the largest systematic epigenomic analyses of monozygotic twins discordant for curve severity and supports the important role of altered DNA methylation in AIS. CLINICAL SIGNIFICANCE The identified CpG sites provide insight into novel biomarkers predicting curve progression of AIS. Furthermore, the differentially methylated genes and enriched pathways may serve as interventional therapy target for AIS patients.
Collapse
Affiliation(s)
- Zhichong Wu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School; Nanjing, Jiangsu, China
| | - Zhicheng Dai
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School; Nanjing, Jiangsu, China
| | - Zhenhua Feng
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School; Nanjing, Jiangsu, China
| | - Yong Qiu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School; Nanjing, Jiangsu, China
| | - Zezhang Zhu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School; Nanjing, Jiangsu, China
| | - Leilei Xu
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School; Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Erdos E, Sandor K, Young-Erdos CL, Halasz L, Smith SR, Osborne TF, Divoux A. Transcriptional Control of Subcutaneous Adipose Tissue by the Transcription Factor CTCF Modulates Heterogeneity in Fat Distribution in Women. Cells 2023; 13:86. [PMID: 38201289 PMCID: PMC10778492 DOI: 10.3390/cells13010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Determining the mechanism driving body fat distribution will provide insights into obesity-related health risks. We used functional genomics tools to profile the epigenomic landscape to help infer the differential transcriptional potential of apple- and pear-shaped women's subcutaneous adipose-derived stem cells (ADSCs). We found that CCCTC-binding factor (CTCF) expression and its chromatin binding were increased in ADSCs from pear donors compared to those from apple donors. Interestingly, the pear enriched CTCF binding sites were located predominantly at the active transcription start sites (TSSs) of genes with active histone marks and YY1 motifs and were also associated with pear enriched RNAPII binding. In contrast, apple enriched CTCF binding sites were mainly found at intergenic regions and when identified at TSS, they were enriched with the bivalent chromatin signatures. Altogether, we provide evidence that CTCF plays an important role in differential regulation of subcutaneous ADSCs gene expression and may influence the development of apple vs. pear body shape.
Collapse
Affiliation(s)
- Edina Erdos
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | - Katalin Sandor
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | | | - Laszlo Halasz
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | - Steven R. Smith
- Translational Research Institute, Adventhealth, Orlando, FL 32804, USA
| | - Timothy F. Osborne
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | - Adeline Divoux
- Translational Research Institute, Adventhealth, Orlando, FL 32804, USA
| |
Collapse
|
4
|
Keller M, Svensson SIA, Rohde-Zimmermann K, Kovacs P, Böttcher Y. Genetics and Epigenetics in Obesity: What Do We Know so Far? Curr Obes Rep 2023; 12:482-501. [PMID: 37819541 DOI: 10.1007/s13679-023-00526-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW Enormous progress has been made in understanding the genetic architecture of obesity and the correlation of epigenetic marks with obesity and related traits. This review highlights current research and its challenges in genetics and epigenetics of obesity. RECENT FINDINGS Recent progress in genetics of polygenic traits, particularly represented by genome-wide association studies, led to the discovery of hundreds of genetic variants associated with obesity, which allows constructing polygenic risk scores (PGS). In addition, epigenome-wide association studies helped identifying novel targets and methylation sites being important in the pathophysiology of obesity and which are essential for the generation of methylation risk scores (MRS). Despite their great potential for predicting the individual risk for obesity, the use of PGS and MRS remains challenging. Future research will likely discover more loci being involved in obesity, which will contribute to better understanding of the complex etiology of human obesity. The ultimate goal from a clinical perspective will be generating highly robust and accurate prediction scores allowing clinicians to predict obesity as well as individual responses to body weight loss-specific life-style interventions.
Collapse
Affiliation(s)
- Maria Keller
- Medical Department III-Endocrinology, Nephrology, Rheumatology, Medical Center, University of Leipzig, 04103, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Stina Ingrid Alice Svensson
- EpiGen, Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway
| | - Kerstin Rohde-Zimmermann
- Medical Department III-Endocrinology, Nephrology, Rheumatology, Medical Center, University of Leipzig, 04103, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III-Endocrinology, Nephrology, Rheumatology, Medical Center, University of Leipzig, 04103, Leipzig, Germany
| | - Yvonne Böttcher
- EpiGen, Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway.
- EpiGen, Medical Division, Akershus University Hospital, 1478, Lørenskog, Norway.
| |
Collapse
|
5
|
Hatton AA, Hillary RF, Bernabeu E, McCartney DL, Marioni RE, McRae AF. Blood-based genome-wide DNA methylation correlations across body-fat- and adiposity-related biochemical traits. Am J Hum Genet 2023; 110:1564-1573. [PMID: 37652023 PMCID: PMC10502853 DOI: 10.1016/j.ajhg.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/04/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
The recent increase in obesity levels across many countries is likely to be driven by nongenetic factors. The epigenetic modification DNA methylation (DNAm) may help to explore this, as it is sensitive to both genetic and environmental exposures. While the relationship between DNAm and body-fat traits has been extensively studied, there is limited literature on the shared associations of DNAm variation across such traits. Akin to genetic correlation estimates, here, we introduce an approach to evaluate the similarities in DNAm associations between traits: DNAm correlations. As DNAm can be both a cause and consequence of complex traits, DNAm correlations have the potential to provide insights into trait relationships above that currently obtained from genetic and phenotypic correlations. Utilizing 7,519 unrelated individuals from Generation Scotland with DNAm from the EPIC array, we calculated DNAm correlations between body-fat- and adiposity-related traits by using the bivariate OREML framework in the OSCA software. For each trait, we also estimated the shared contribution of DNAm between sexes. We identified strong, positive DNAm correlations between each of the body-fat traits (BMI, body-fat percentage, and waist-to-hip ratio, ranging from 0.96 to 1.00), finding larger associations than those identified by genetic and phenotypic correlations. We identified a significant deviation from 1 in the DNAm correlations for BMI between males and females, with sex-specific DNAm changes associated with BMI identified at eight DNAm probes. Employing genome-wide DNAm correlations to evaluate the similarities in the associations of DNAm with complex traits has provided insight into obesity-related traits beyond that provided by genetic correlations.
Collapse
Affiliation(s)
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Elena Bernabeu
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Allan F McRae
- Institute for Molecular Bioscience, Brisbane, Australia.
| |
Collapse
|
6
|
Chu DT, Bui NL, Vu Thi H, Nguyen Thi YV. Role of DNA methylation in diabetes and obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:153-170. [PMID: 37019591 DOI: 10.1016/bs.pmbts.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Due to the fact that the upward trend of several metabolic disorders such as diabetes and obesity, in individuals especially monozygotic twins, who are under the same effects from the environment, are not similar, the role of epigenetic elements like DNA methylation needs taking into account. In this chapter, emerging scientific evidence supporting the strong relationship between changes in DNA methylation and those diseases' development was summarized. Changing in the expression level of diabetes/obesity-related genes through being silenced by methylation can be the underlying mechanism of this phenomenon. Genes with abnormal methylation status are potential biomarkers for early prediction and diagnosis. Moreover, methylation-based molecular targets should be investigated as a new treatment for both T2D and obesity.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| | - Nhat-Le Bui
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Hue Vu Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| | - Yen-Vy Nguyen Thi
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|