1
|
Chai HC, Mahendran R, Ong KC, Chua KH. Revisiting the gene mutations and protein profile of WT 9-12: An autosomal dominant polycystic kidney disease cell line. Genes Cells 2024; 29:599-607. [PMID: 38782708 DOI: 10.1111/gtc.13129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/30/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
WT 9-12 is one of the cell lines commonly used for autosomal dominant polycystic kidney disease (ADPKD) studies. Previous studies had described the PKD gene mutations and polycystin expression in WT 9-12. Nonetheless, the mutations occurring in other ADPKD-associated genes have not been investigated. This study aims to revisit these mutations and protein profile of WT 9-12. Whole genome sequencing verified the presence of truncation mutation at amino acid 2556 (Q2556X) in PKD1 gene of WT 9-12. Besides, those variations with high impacts included single nucleotide polymorphisms (rs8054182, rs117006360, and rs12925771) and insertions and deletions (InDels) (rs145602984 and rs55980345) in PKD1L2; InDel (rs1296698195) in PKD1L3; and copy number variations in GANAB. Protein profiles generated from the total proteins of WT 9-12 and HK-2 cells were compared using isobaric tags for relative and absolute quantitation (iTRAQ) analysis. Polycystin-1 was absent in WT 9-12. The gene ontology enrichment and reactome pathway analyses revealed that the upregulated and downregulated proteins of WT 9-12 relative to HK-2 cell line leaded to signaling pathways related to immune response and amino acid metabolism, respectively. The ADPKD-related mutations and signaling pathways associated with differentially expressed proteins in WT 9-12 may help researchers in cell line selection for their studies.
Collapse
Affiliation(s)
- Hwa Chia Chai
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rhubaniya Mahendran
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Mahboobipour AA, Ala M, Safdari Lord J, Yaghoobi A. Clinical manifestation, epidemiology, genetic basis, potential molecular targets, and current treatment of polycystic liver disease. Orphanet J Rare Dis 2024; 19:175. [PMID: 38671465 PMCID: PMC11055360 DOI: 10.1186/s13023-024-03187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Polycystic liver disease (PLD) is a rare condition observed in three genetic diseases, including autosomal dominant polycystic liver disease (ADPLD), autosomal dominant polycystic kidney disease (ADPKD), and autosomal recessive polycystic kidney disease (ARPKD). PLD usually does not impair liver function, and advanced PLD becomes symptomatic when the enlarged liver compresses adjacent organs or increases intra-abdominal pressure. Currently, the diagnosis of PLD is mainly based on imaging, and genetic testing is not required except for complex cases. Besides, genetic testing may help predict patients' prognosis, classify patients for genetic intervention, and conduct early treatment. Although the underlying genetic causes and mechanisms are not fully understood, previous studies refer to primary ciliopathy or impaired ciliogenesis as the main culprit. Primarily, PLD occurs due to defective ciliogenesis and ineffective endoplasmic reticulum quality control. Specifically, loss of function mutations of genes that are directly involved in ciliogenesis, such as Pkd1, Pkd2, Pkhd1, and Dzip1l, can lead to both hepatic and renal cystogenesis in ADPKD and ARPKD. In addition, loss of function mutations of genes that are involved in endoplasmic reticulum quality control and protein folding, trafficking, and maturation, such as PRKCSH, Sec63, ALG8, ALG9, GANAB, and SEC61B, can impair the production and function of polycystin1 (PC1) and polycystin 2 (PC2) or facilitate their degradation and indirectly promote isolated hepatic cystogenesis or concurrent hepatic and renal cystogenesis. Recently, it was shown that mutations of LRP5, which impairs canonical Wnt signaling, can lead to hepatic cystogenesis. PLD is currently treated by somatostatin analogs, percutaneous intervention, surgical fenestration, resection, and liver transplantation. In addition, based on the underlying molecular mechanisms and signaling pathways, several investigational treatments have been used in preclinical studies, some of which have shown promising results. This review discusses the clinical manifestation, complications, prevalence, genetic basis, and treatment of PLD and explains the investigational methods of treatment and future research direction, which can be beneficial for researchers and clinicians interested in PLD.
Collapse
Affiliation(s)
- Amir Ali Mahboobipour
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Javad Safdari Lord
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Yaghoobi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
3
|
Zhuang J, Aierken A, Yalikun D, Zhang J, Wang X, Ren Y, Tian X, Jiang H. Case report: Genotype-phenotype characteristics of nine novel PKD1 mutations in eight Chinese patients with autosomal dominant polycystic kidney disease. Front Med (Lausanne) 2023; 10:1268307. [PMID: 37901409 PMCID: PMC10600478 DOI: 10.3389/fmed.2023.1268307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder. The PKD1 gene is responsible for the majority of ADPKD cases, and the mutations in this gene exhibit high genetic diversity. This study aimed to investigate the association between genotype and phenotype in ADPKD patients with PKD1 gene mutations through pedigree analysis. Methods Eight Chinese pedigrees affected by ADPKD were analyzed using whole-exome sequencing (WES) on peripheral blood DNA. The identified variants were validated using Sanger sequencing, and clinical data from the patients and their families were collected and analyzed. Results Nine novel mutation sites in PKD1 were discovered across the pedigrees, including c.4247T > G, c.3298_3301delGAGT, c.4798A > G, c.7567G > A, c.11717G > C, c.7703 + 5G > C, c.3296G > A, c.8515_8516insG, and c.5524C > A. These mutations were found to be associated with a range of clinical phenotypes, including chronic kidney disease, hypertension, and polycystic liver. The age of onset and disease progression displayed significant heterogeneity among the pedigrees, with some individuals exhibiting early onset and rapid disease progression, while others remained asymptomatic or had milder disease symptoms. Inheritance patterns supported autosomal dominant inheritance, as affected individuals inherited the mutations from affected parents. However, there were instances of individuals carrying the mutations who remained asymptomatic or exhibited milder disease phenotypes. Conclusion This study highlights the importance of comprehensive genotype analysis in understanding the progression and prognosis of ADPKD. The identification of novel mutation sites expands our knowledge of PKD1 gene mutations. These findings contribute to a better understanding of the disease and may have implications for personalized therapeutic strategies.
Collapse
Affiliation(s)
- Jing Zhuang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Ailima Aierken
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Dilina Yalikun
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Jun Zhang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Xiaoqin Wang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Yongfang Ren
- Department of Radiology and Medical Imaging, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
| |
Collapse
|
4
|
Boerrigter MM, Duijzer R, te Morsche RHM, Drenth JPH. Heterozygosity of ALG9 in Association with Autosomal Dominant Polycystic Liver Disease. Genes (Basel) 2023; 14:1755. [PMID: 37761895 PMCID: PMC10530326 DOI: 10.3390/genes14091755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
α-1,2-mannosyltransferase (ALG9) germline variants are linked to autosomal dominant polycystic kidney disease (ADPKD). Many individuals affected with ADPKD possess polycystic livers as a common extrarenal manifestation. We performed whole exome sequencing in a female with autosomal dominant polycystic liver disease (ADPLD) without kidney cysts and established the presence of a heterozygous missense variant (c.677G>C p.(Gly226Ala)) in ALG9. In silico pathogenicity prediction and 3D protein modeling determined this variant as pathogenic. Loss of heterozygosity is regularly seen in liver cyst walls. Immunohistochemistry indicated the absence of ALG9 in liver tissue from this patient. ALG9 expression was absent in cyst wall lining from ALG9- and PRKCSH-caused ADPLD patients but present in the liver cyst lining derived from an ADPKD patient with a PKD2 variant. Thus, heterozygous pathogenic variants in ALG9 are also associated with ADPLD. Somatic loss of heterozygosity of the ALG9 enzyme was seen in the ALG9 patient but also in ADPLD patients with a different genetic background. This expanded the phenotypic spectrum of ADPLD to ALG9.
Collapse
Affiliation(s)
- Melissa M. Boerrigter
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Renée Duijzer
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- European Reference Network RARE-LIVER, D-20246 Hamburg, Germany
| | - René H. M. te Morsche
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Joost P. H. Drenth
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- European Reference Network RARE-LIVER, D-20246 Hamburg, Germany
| |
Collapse
|
5
|
Boerrigter MM, te Morsche RHM, Venselaar H, Pastoors N, Geerts AM, Hoorens A, Drenth JPH. Novel α-1,3-Glucosyltransferase Variants and Their Broad Clinical Polycystic Liver Disease Spectrum. Genes (Basel) 2023; 14:1652. [PMID: 37628703 PMCID: PMC10454741 DOI: 10.3390/genes14081652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Protein-truncating variants in α-1,3-glucosyltransferase (ALG8) are a risk factor for a mild cystic kidney disease phenotype. The association between these variants and liver cysts is limited. We aim to identify pathogenic ALG8 variants in our cohort of autosomal dominant polycystic liver disease (ADPLD) individuals. In order to fine-map the phenotypical spectrum of pathogenic ALG8 variant carriers, we performed targeted ALG8 screening in 478 ADPLD singletons, and exome sequencing in 48 singletons and 4 patients from two large ADPLD families. Eight novel and one previously reported pathogenic variant in ALG8 were discovered in sixteen patients. The ALG8 clinical phenotype ranges from mild to severe polycystic liver disease, and from innumerable small to multiple large hepatic cysts. The presence of <5 renal cysts that do not affect renal function is common in this population. Three-dimensional homology modeling demonstrated that six variants cause a truncated ALG8 protein with abnormal functioning, and one variant is predicted to destabilize ALG8. For the seventh variant, immunostaining of the liver tissue showed a complete loss of ALG8 in the cystic cells. ALG8-associated ADPLD has a broad clinical spectrum, including the possibility of developing a small number of renal cysts. This broadens the ADPLD genotype-phenotype spectrum and narrows the gap between liver-specific ADPLD and kidney-specific ADPKD.
Collapse
Affiliation(s)
- Melissa M. Boerrigter
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - René H. M. te Morsche
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Hanka Venselaar
- Center for Molecular and Biomolecular Informatics, Research Institute for Medical Innovation, 6500 HB Nijmegen, The Netherlands
| | - Nikki Pastoors
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Anja M. Geerts
- Department of Gastroenterology and Hepatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Joost P. H. Drenth
- Department of Gastroenterology and Hepatology, Research Institute for Medical Innovation, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
6
|
Schlevogt B, Schlieper V, Krader J, Schröter R, Wagner T, Weiand M, Zibert A, Schmidt HH, Bergmann C, Nedvetsky PI, Krahn MP. A SEC61A1 variant is associated with autosomal dominant polycystic liver disease. Liver Int 2023; 43:401-412. [PMID: 36478640 DOI: 10.1111/liv.15493] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/28/2022] [Accepted: 11/12/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND AIMS Autosomal dominant polycystic liver and kidney disease is a spectrum of hereditary diseases, which display disturbed function of primary cilia leading to cyst formation. In autosomal dominant polycystic kidney disease a genetic cause can be determined in almost all cases. However, in isolated polycystic liver disease (PLD) about half of all cases remain genetically unsolved, suggesting more, so far unidentified genes to be implicated in this disease. METHODS Customized next-generation sequencing was used to identify the underlying pathogenesis in two related patients with PLD. A variant identified in SEC61A1 was further analysed in immortalized patients' urine sediment cells and in an epithelial cell model. RESULTS In both patients, a heterozygous missense change (c.706C>T/p.Arg236Cys) was found in SEC61A1, which encodes for a subunit of the translocation machinery of protein biosynthesis at the endoplasmic reticulum (ER). While kidney disease is absent in the proposita, her mother displays an atypical polycystic kidney phenotype with severe renal failure. In immortalized urine sediment cells, mutant SEC61A1 is expressed at reduced levels, resulting in decreased levels of polycystin-2 (PC2). In an epithelial cell culture model, we found the proteasomal degradation of mutant SEC61A1 to be increased, whereas its localization to the ER is not affected. CONCLUSIONS Our data expand the allelic and clinical spectrum for SEC61A1, adding PLD as a new and the major phenotypic trait in the family described. We further demonstrate that mutant SEC61A1 results in enhanced proteasomal degradation and impaired biosynthesis of PC2.
Collapse
Affiliation(s)
- Bernhard Schlevogt
- Department of Medicine B, University Hospital Muenster, Muenster, Germany
| | - Vincent Schlieper
- Department of Medicine D, University Hospital Muenster, Muenster, Germany
| | - Jana Krader
- Department of Medicine D, University Hospital Muenster, Muenster, Germany
| | - Rita Schröter
- Department of Medicine D, University Hospital Muenster, Muenster, Germany
| | - Thomas Wagner
- Department of Medicine D, University Hospital Muenster, Muenster, Germany
| | - Matthias Weiand
- Department of Medicine B, University Hospital Muenster, Muenster, Germany
| | - Andree Zibert
- Department of Medicine B, University Hospital Muenster, Muenster, Germany
| | - Hartmut H Schmidt
- Department of Medicine B, University Hospital Muenster, Muenster, Germany.,Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
| | - Carsten Bergmann
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany.,Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
| | - Pavel I Nedvetsky
- Department of Medicine D, University Hospital Muenster, Muenster, Germany
| | - Michael P Krahn
- Department of Medicine D, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
7
|
Senum SR, Li Y(SM, Benson KA, Joli G, Olinger E, Lavu S, Madsen CD, Gregory AV, Neatu R, Kline TL, Audrézet MP, Outeda P, Nau CB, Meijer E, Ali H, Steinman TI, Mrug M, Phelan PJ, Watnick TJ, Peters DJ, Ong AC, Conlon PJ, Perrone RD, Cornec-Le Gall E, Hogan MC, Torres VE, Sayer JA, Harris PC, Harris PC. Monoallelic IFT140 pathogenic variants are an important cause of the autosomal dominant polycystic kidney-spectrum phenotype. Am J Hum Genet 2022; 109:136-156. [PMID: 34890546 DOI: 10.1016/j.ajhg.2021.11.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), characterized by progressive cyst formation/expansion, results in enlarged kidneys and often end stage kidney disease. ADPKD is genetically heterogeneous; PKD1 and PKD2 are the common loci (∼78% and ∼15% of families) and GANAB, DNAJB11, and ALG9 are minor genes. PKD is a ciliary-associated disease, a ciliopathy, and many syndromic ciliopathies have a PKD phenotype. In a multi-cohort/-site collaboration, we screened ADPKD-diagnosed families that were naive to genetic testing (n = 834) or for whom no PKD1 and PKD2 pathogenic variants had been identified (n = 381) with a PKD targeted next-generation sequencing panel (tNGS; n = 1,186) or whole-exome sequencing (WES; n = 29). We identified monoallelic IFT140 loss-of-function (LoF) variants in 12 multiplex families and 26 singletons (1.9% of naive families). IFT140 is a core component of the intraflagellar transport-complex A, responsible for retrograde ciliary trafficking and ciliary entry of membrane proteins; bi-allelic IFT140 variants cause the syndromic ciliopathy, short-rib thoracic dysplasia (SRTD9). The distinctive monoallelic phenotype is mild PKD with large cysts, limited kidney insufficiency, and few liver cysts. Analyses of the cystic kidney disease probands of Genomics England 100K showed that 2.1% had IFT140 LoF variants. Analysis of the UK Biobank cystic kidney disease group showed probands with IFT140 LoF variants as the third most common group, after PKD1 and PKD2. The proximity of IFT140 to PKD1 (∼0.5 Mb) in 16p13.3 can cause diagnostic confusion, and PKD1 variants could modify the IFT140 phenotype. Importantly, our studies link a ciliary structural protein to the ADPKD spectrum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|