1
|
Som M, Gikanga B, Kanapuram V, Yadav S. Drug product Formulation and Fill/Finish Manufacturing Process Considerations for AAV-Based Genomic Medicines. J Pharm Sci 2024; 113:1711-1725. [PMID: 38570073 DOI: 10.1016/j.xphs.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Adeno-associated viruses (AAVs) have become the delivery medium of choice for a variety of genomic medicine applications i.e., gene therapy, gene editing/regulation, and ex-vivo cell therapy. AAVs are protein-DNA complexes which have unique stability characteristics that are susceptible to various stress exposure conditions commonly seen in the drug product (DP) life cycle. This review takes a comprehensive look at AAV DP formulation and process development considerations that could impact critical quality attributes (CQAs) during manufacturing, packaging, shipping, and clinical use. Additional aspects related to AAV development reviewed herein are: (1) Different AAV serotypes with unique protein sequences and charge characteristics potentially leading to discrete stability profiles; (2) Manufacturing process challenges and optimization efforts to improve yield, recovery and purity especially during early development activities; and (3) Defining and identifying CQAs with analytical methods which are constantly evolving and present unique characterization challenges for AAV-based products.
Collapse
Affiliation(s)
- Madhura Som
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States.
| | - Benson Gikanga
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States
| | - Varna Kanapuram
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States
| | - Sandeep Yadav
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States.
| |
Collapse
|
2
|
Genome editing in the human liver: Progress and translational considerations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:257-288. [PMID: 34175044 DOI: 10.1016/bs.pmbts.2021.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Liver-targeted genome editing offers the prospect of life-long therapeutic benefit following a single treatment and is set to rapidly supplant conventional gene addition approaches. Combining progress in liver-targeted gene delivery with genome editing technology, makes this not only feasible but realistically achievable in the near term. However, important challenges remain to be addressed. These include achieving therapeutic levels of editing, particularly in vivo, avoidance of off-target effects on the genome and the potential impact of pre-existing immunity to bacteria-derived nucleases, when used to improve editing rates. In this chapter, we outline the unique features of the liver that make it an attractive target for genome editing, the impact of liver biology on therapeutic efficacy, and disease specific challenges, including whether the approach targets a cell autonomous or non-cell autonomous disease. We also discuss strategies that have been used successfully to achieve genome editing outcomes in the liver and address translational considerations as genome editing technology moves into the clinic.
Collapse
|
3
|
Ginn SL, Amaya AK, Liao SHY, Zhu E, Cunningham SC, Lee M, Hallwirth CV, Logan GJ, Tay SS, Cesare AJ, Pickett HA, Grompe M, Dilworth K, Lisowski L, Alexander IE. Efficient in vivo editing of OTC-deficient patient-derived primary human hepatocytes. JHEP Rep 2020; 2:100065. [PMID: 32039406 PMCID: PMC7005564 DOI: 10.1016/j.jhepr.2019.100065] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background & Aims Genome editing technology has immense therapeutic potential and is likely to rapidly supplant contemporary gene addition approaches. Key advantages include the capacity to directly repair mutant loci with resultant recovery of physiological gene expression and maintenance of durable therapeutic effects in replicating cells. In this study, we aimed to repair a disease-causing point mutation in the ornithine transcarbamylase (OTC) locus in patient-derived primary human hepatocytes in vivo at therapeutically relevant levels. Methods Editing reagents for precise CRISPR/SaCas9-mediated cleavage and homology-directed repair (HDR) of the human OTC locus were first evaluated against an OTC minigene cassette transposed into the mouse liver. The editing efficacy of these reagents was then tested on the native OTC locus in patient-derived primary human hepatocytes xenografted into the FRG (Fah-/-Rag2-/-Il2rg-/-) mouse liver. A highly human hepatotropic capsid (NP59) was used for adeno-associated virus (AAV)-mediated gene transfer. Editing events were characterised using next-generation sequencing and restoration of OTC expression was evaluated using immunofluorescence. Results Following AAV-mediated delivery of editing reagents to patient-derived primary human hepatocytes in vivo, OTC locus-specific cleavage was achieved at efficiencies of up to 72%. Importantly, successful editing was observed in up to 29% of OTC alleles at clinically relevant vector doses. No off-target editing events were observed at the top 10 in silico-predicted sites in the genome. Conclusions We report efficient single-nucleotide correction of a disease-causing mutation in the OTC locus in patient-derived primary human hepatocytes in vivo at levels that, if recapitulated in the clinic, would provide benefit for even the most therapeutically challenging liver disorders. Key challenges for clinical translation include the cell cycle dependence of classical HDR and mitigation of unintended on- and off-target editing events. Lay summary The ability to efficiently and safely correct disease-causing mutations remains the holy grail of gene therapy. Herein, we demonstrate, for the first time, efficient in vivo correction of a patient-specific disease-causing mutation in the OTC gene in primary human hepatocytes, using therapeutically relevant vector doses. We also highlight the challenges that need to be overcome for this technology to be translated into clinical practice. Therapeutically relevant levels of single-nucleotide repair of the human OTC locus were achieved in vivo. Single-nucleotide editing of primary human hepatocytes was facilitated by a highly hepatotropic bioengineered AAV capsid. A novel human minigene platform proved highly effective for evaluation of human liver-specific genome editing reagents.
Collapse
Key Words
- 7 NGS, next-generation sequencing
- AAV, adeno-associated virus
- BrdU, bromodeoxyuridine
- CRISPR-Cas9
- FRG, Fah-/-Rag2-/-Il2rg-/-
- HDR, homology-directed repair
- ITR, inverted terminal repeats
- InDels, insertions and deletions
- LSP1, liver-specific promoter
- NHEJ, non-homologous end joining
- NP59 capsid
- OTC deficiency
- PAM, protospacer adjacent motif
- PRE, mutant form of the Woodchuck hepatitis virus posttranscriptional regulatory element
- RTA, Real Time Analysis
- SV40 pA, SV40 polyadenylation signal sequence
- SaCas9, Staphylococcus aureus Cas9 nuclease
- TBG, human thyroxine binding globulin promoter
- U6, RNA polymerase III promoter for human U6 snRNA
- WT, wild-type
- genome editing
- homology-directed repair
- humanised FRG mice
- pA, bovine growth hormone polyadenylation signal sequence
- primary human hepatocytes
- rAAV, recombinant adeno-associated virus
- recombinant AAV
- sgRNA, single guide RNA
- synthetic capsid
Collapse
Affiliation(s)
- Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Anais K Amaya
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Sophia H Y Liao
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Erhua Zhu
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Sharon C Cunningham
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Michael Lee
- Telomere Length Regulation Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Claus V Hallwirth
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Grant J Logan
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Szun S Tay
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Anthony J Cesare
- Genome Integrity Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Markus Grompe
- School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Kimberley Dilworth
- Translational Vectorology Group and Vector & Genome Engineering Facility, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Leszek Lisowski
- Translational Vectorology Group and Vector & Genome Engineering Facility, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia.,Military Institute of Hygiene and Epidemiology, Pulway, Poland
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia.,Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| |
Collapse
|
5
|
Schwarz KA, Leonard JN. Engineering cell-based therapies to interface robustly with host physiology. Adv Drug Deliv Rev 2016; 105:55-65. [PMID: 27266446 DOI: 10.1016/j.addr.2016.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/10/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
Abstract
Engineered cell-based therapies comprise a rapidly growing clinical technology for treating disease by leveraging the natural capabilities of cells, including migration, information transduction, and biosynthesis and secretion. There now exists a substantial portfolio of intracellular and extracellular sensors that enable bioengineers to program cells to execute defined responses to specific changes in state or environmental cues. As our capability to construct more sophisticated cellular programs increases, assessing and improving the degree to which cell-based therapies perform as desired in vivo will become an increasingly important consideration and opportunity for technological advancement. In this review, we seek to describe both current capabilities and potential needs for building cell-based therapies that interface with host physiology in a manner that is robust - a phrase we use in this context to describe the achievement of therapeutic efficacy across a range of patients and implementations. We first review the portfolio of sensors and outputs currently available for use in cell-based therapies by highlighting key advancements and current gaps. Then, we propose a conceptual framework for evaluating and pursuing robust clinical performance of engineered cell-based therapies.
Collapse
|
6
|
Gomez EJ, Gerhardt K, Judd J, Tabor JJ, Suh J. Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery. ACS NANO 2016; 10:225-237. [PMID: 26618393 DOI: 10.1021/acsnano.5b05558] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Gene delivery vectors that are activated by external stimuli may allow improved control over the location and the degree of gene expression in target populations of cells. Light is an attractive stimulus because it does not cross-react with cellular signaling networks, has negligible toxicity, is noninvasive, and can be applied in space and time with unparalleled precision. We used the previously engineered red (R)/far-red (FR) light-switchable protein phytochrome B (PhyB) and its R light dependent interaction partner phytochrome interacting factor 6 (PIF6) from Arabidopsis thaliana to engineer an adeno-associated virus (AAV) platform whose gene delivery efficiency is controlled by light. Upon exposure to R light, AAV engineered to display PIF6 motifs on the capsid bind to PhyB tagged with a nuclear localization sequence (NLS), resulting in significantly increased translocation of viruses into the host cell nucleus and overall gene delivery efficiency. By modulating the ratio of R to FR light, the gene delivery efficiency can be tuned to as little as 35% or over 600% of the unengineered AAV. We also demonstrate spatial control of gene delivery using projected patterns of codelivered R and FR light. Overall, our successful use of light-switchable proteins in virus capsid engineering extends these important optogenetic tools into the adjacent realm of nucleic acid delivery and enables enhanced, tunable, and spatially controllable regulation of viral gene delivery. Our current light-triggered viral gene delivery prototype may be broadly useful for genetic manipulation of cells ex vivo or in vivo in transgenic model organisms, with the ultimate prospect of achieving dose- and site-specific gene expression profiles for either therapeutic (e.g., regenerative medicine) or fundamental discovery research efforts.
Collapse
Affiliation(s)
- Eric J Gomez
- Department of Bioengineering, ‡Systems, Synthetic, and Physical Biology Program, and §Department of Biochemistry and Cell Biology, Rice University , Houston, Texas 77005, United States
| | - Karl Gerhardt
- Department of Bioengineering, ‡Systems, Synthetic, and Physical Biology Program, and §Department of Biochemistry and Cell Biology, Rice University , Houston, Texas 77005, United States
| | - Justin Judd
- Department of Bioengineering, ‡Systems, Synthetic, and Physical Biology Program, and §Department of Biochemistry and Cell Biology, Rice University , Houston, Texas 77005, United States
| | - Jeffrey J Tabor
- Department of Bioengineering, ‡Systems, Synthetic, and Physical Biology Program, and §Department of Biochemistry and Cell Biology, Rice University , Houston, Texas 77005, United States
| | - Junghae Suh
- Department of Bioengineering, ‡Systems, Synthetic, and Physical Biology Program, and §Department of Biochemistry and Cell Biology, Rice University , Houston, Texas 77005, United States
| |
Collapse
|