1
|
Jin L, Fan K, Tan S, Liu S, Ge Q, Wang Y, Ai Z, Yu S. The Beneficial Effects of Hydrogen-Rich Saline Irrigation on Chronic Rhinitis: A Randomized, Double-Blind Clinical Trial. J Inflamm Res 2022; 15:3983-3995. [PMID: 35873384 PMCID: PMC9296884 DOI: 10.2147/jir.s365611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Chronic rhinitis (CR) is a common chronic inflammation of the nasal mucosa. Nasal saline irrigation has been demonstrated to be an effective treatment for CR. In this study, we investigated the beneficial effects of hydrogen-rich saline irrigation as an anti-inflammatory irrigation therapy for CR and compared its effectiveness over saline irrigation. Hydrogen-rich saline (HRS) was investigated due to its antioxidant and anti-inflammatory properties. Methods A total of 120 patients with CR were randomly divided into two groups, patients irrigated with HR (HRS group) and the control group irrigated with saline (NS group). A randomized, double-blind control study was performed. The main observation index in this study was the total score of nasal symptoms (TNSS). In addition, eosinophilic protein (ECP) of the nasal secretions, nasal nitric oxide (nNO) levels, and levels of regulatory T cells (Treg) and regulatory B cells (Breg) were also compared between the two groups. Furthermore, patients with allergic rhinitis (AR) and non-allergic rhinitis (NAR) were also evaluated based on serum-specific IgE positivity. Results After treatment, TNSS and nasal ECP in the two groups decreased significantly (P<0.05), with patients in the HRS group showing significantly lower levels compared to the NS group (P<0.05). There were no significant differences in Treg and Breg levels between the two groups. Subgroup analysis showed that TNSS in the AR-HRS group showed a more significant reduction compared to the AR-NS group (P<0.05); however, there were no significant differences for the other inflammatory biomarkers (P>0.05). ECP levels were reduced significantly in the NAR subgroup compared to NS irrigation (P<0.05). There were no obvious adverse events observed in patients during the entire treatment period. Conclusion Compared to saline irrigation, HRS nasal irrigation was found to improve CR clinical symptoms, especially in patients with AR. HRS could effectively be used for the clinical treatment of patients with CR. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/8YpkEFCYNzI
Collapse
Affiliation(s)
- Ling Jin
- Department of Otolaryngology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People's Republic of China
| | - Kai Fan
- Department of Otolaryngology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People's Republic of China
| | - Shiwang Tan
- Department of Otolaryngology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People's Republic of China
| | - Shangxi Liu
- Department of Otolaryngology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People's Republic of China
| | - Qin Ge
- Department of Otolaryngology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People's Republic of China
| | - Yang Wang
- Department of Otolaryngology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People's Republic of China
| | - Zisheng Ai
- Department of Medical Statistics, School of Medicine, Tongji University, Shanghai, 200331, People's Republic of China
| | - Shaoqing Yu
- Department of Otolaryngology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, People's Republic of China
| |
Collapse
|
2
|
Dynamic changes in regulatory T cells during normal pregnancy, recurrent pregnancy loss, and gestational diabetes. J Reprod Immunol 2022; 150:103492. [DOI: 10.1016/j.jri.2022.103492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
|
3
|
Downregulation of Adhesion Molecule CHL1 in B Cells but Not T Cells of Patients with Major Depression and in the Brain of Mice with Chronic Stress. Neurotox Res 2020; 38:914-928. [PMID: 32557322 DOI: 10.1007/s12640-020-00234-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 12/19/2022]
Abstract
Depression is a common serious mental disorder with unclear pathogenesis. Currently, specific diagnostic biomarkers are yet to be characterized. The close homolog of L1 (CHL1) is a L1 family cell adhesion molecule involved in the regulation of neuronal survival and growth. Although genome-wide expression profiling of human lymphoblastoid cell lines (LCLs) reported neural cell adhesion molecule (NCAM) L1 as a tentative biomarker for selective serotonin reuptake inhibitor (SSRI) antidepressant response, the involvement of CHL1 in depression is unclear. In this study, using a well-established chronic unpredictable mild stress (CUMS) depression mouse model, we examined the mRNA and protein expression of CHL1 in normal control, CUMS, vehicle (VEH), fluoxetine (FLU), and clozapine (CLO) groups. We found that in the CUMS group, both mRNA and protein expression of CHL1 were downregulated in both the hippocampus and the cortex. Treatment of CUMS mice with FLU and CLO reversed CHL1 mRNA and protein expression. In the human study, we showed that CHL1 expression was significantly downregulated in monocytes of unipolar and bipolar depressive patients compared with healthy donors (HD) at both mRNA and protein levels. Consistently, ELISA showed that CHL1 levels in the serum of patients with depression were reduced and negatively correlated with their HRSD-21 scores. Further flow cytometry studies showed that the reduced number of CHL1 positive CD19+ and CD20+ B cells of patients with depression was subsequently reversed with antidepressant treatment. Our findings suggested that downregulation of CHL1 from both immune cells and the brain may be linked to the immunopathogenesis of depression. In conclusion, CHL1 may be an important predictive marker for both diagnosis and treatment outcome of depression.
Collapse
|
4
|
Mancusi A, Alvarez M, Piccinelli S, Velardi A, Pierini A. TNFR2 signaling modulates immunity after allogeneic hematopoietic cell transplantation. Cytokine Growth Factor Rev 2019; 47:54-61. [PMID: 31122819 DOI: 10.1016/j.cytogfr.2019.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor-α (TNF-α) signaling through TNF receptor 2 (TNFR2) plays a complex immune regulatory role in allogeneic hematopoietic cell transplantation (HCT). TNF-α is rapidly released in the circulation after the conditioning regimen with chemotherapy and/or radiotherapy. It activates the function of donor alloreactive T cells and donor Natural Killer cells and promotes graft versus tumor effects. However, donor alloreactive T cells also attack host tissues and cause graft versus host disease (GVHD), a life-threatening complication of HCT. Indeed, anti-TNF-α therapy has been used to treat steroid-refractory GVHD. Recent studies have highlighted another role for TNFR2 signaling, as it enhances the function of immune cells with suppressive properties, in particular CD4+Foxp3+ regulatory T cells (Tregs). Various clinical trials are employing Treg-based treatments to prevent or treat GVHD. The present review will discuss the effects of TNFR2 signaling in the setting of allogeneic HCT, the implications for the use of anti-TNF-α therapy to treat GVHD and the clinical perspectives of strategies that specifically target this pathway.
Collapse
Affiliation(s)
- Antonella Mancusi
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, 06132, Italy
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Sara Piccinelli
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, 06132, Italy
| | - Andrea Velardi
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, 06132, Italy
| | - Antonio Pierini
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, 06132, Italy.
| |
Collapse
|
5
|
Yu Y, Ma X, Gong R, Zhu J, Wei L, Yao J. Recent advances in CD8 + regulatory T cell research. Oncol Lett 2018; 15:8187-8194. [PMID: 29805553 DOI: 10.3892/ol.2018.8378] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/01/2018] [Indexed: 11/05/2022] Open
Abstract
Various subgroups of CD8+ T lymphocytes do not only demonstrate cytotoxic effects, but also serve important regulatory roles in the body's immune response. In particular, CD8+ regulatory T cells (CD8+ Tregs), which possess important immunosuppressive functions, are able to effectively block the overreacting immune response and maintain the body's immune homeostasis. In recent years, studies have identified a small set of special CD8+ Tregs that can recognize major histocompatibility complex class Ib molecules, more specifically Qa-1 in mice and HLA-E in humans, and target the self-reactive CD4+ T ce lls. These findings have generated broad implications in the scientific community and attracted general interest to CD8+ Tregs. The present study reviews the recent research progress on CD8+ Tregs, including their origin, functional classification, molecular markers and underlying mechanisms of action.
Collapse
Affiliation(s)
- Yating Yu
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| | - Xinbo Ma
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| | - Rufei Gong
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| | - Jianmeng Zhu
- Department of Chunan First People's Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Lihua Wei
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| | - Jinguang Yao
- Department of Medical School, Guangxi University of Science and Technology, Liuzhou, Guangxi 545005, P.R. China
| |
Collapse
|
6
|
Mancusi A, Piccinelli S, Velardi A, Pierini A. The Effect of TNF-α on Regulatory T Cell Function in Graft-versus-Host Disease. Front Immunol 2018. [PMID: 29541073 PMCID: PMC5835761 DOI: 10.3389/fimmu.2018.00356] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
FoxP3+ regulatory T cells (Tregs) are a subset of CD4+ T cells that can suppress proliferation and effector functions of T cells, B cells, NK cells, and antigen-presenting cells. Treg deficiency causes dramatic immunologic disease in both animal models and humans. As they are capable to suppress the function and the proliferation of conventional CD4+ and CD8+ T cells, Treg-based cell therapies are under evaluation for the treatment of various autoimmune diseases and are currently employed to prevent graft-versus-host disease (GvHD) in clinical trials of hematopoietic stem cell transplantation. Even though tumor necrosis factor-α (TNF-α) is well known for its pro-inflammatory role, recent studies show that it promotes Treg activation and suppressive function. In the present review, we discuss the role of TNF-α in Treg function and the possible implications on the actual treatments for immune-mediated diseases, with a particular attention to GvHD.
Collapse
Affiliation(s)
- Antonella Mancusi
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, Italy
| | - Sara Piccinelli
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, Italy
| | - Andrea Velardi
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, Italy
| | - Antonio Pierini
- Hematology and Clinical Immunology and Bone Marrow Transplant Program, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
7
|
Ishii R, Hirai T, Miyairi S, Omoto K, Okumi M, Ishii Y, Tanabe K. iNKT cell activation plus T-cell transfer establishes complete chimerism in a murine sublethal bone marrow transplant model. Am J Transplant 2018; 18:328-340. [PMID: 28766890 DOI: 10.1111/ajt.14453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/25/2023]
Abstract
Transplant tolerance induction makes it possible to preserve functional grafts for a lifetime without immunosuppressants. One powerful method is to generate mixed hematopoietic chimeras in recipients by adoptive transfer of donor-derived bone marrow cells (BMCs). In our murine transplantation model, we established a novel method for mixed chimera generation using sublethal irradiation, CD40-CD40L blockade, and invariant natural killer T-cell activation. However, numerous BMCs that are required to achieve stable chimerism makes it difficult to apply this model for human transplantation. Here, we show that donor-derived splenic T cells could contribute to not only the reduction of BMC usage but also the establishment of complete chimerism in model mice. By cotransfer of T cells together even with one-fourth of the BMCs used in our original method, the recipient mice yielded complete chimerism and could acquire donor-specific skin-allograft tolerance. The complete chimeric mice did not show any remarks of graft versus host reaction in vivo and in vitro. Inhibition of the apoptotic signal resulted in increase in host-derived CD8+ T cells and chimerism brake. These results suggest that donor-derived splenic T cells having veto activity play a role in the depletion of host-derived CD8+ T cells and the facilitation of complete chimerism.
Collapse
Affiliation(s)
- Rumi Ishii
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshihito Hirai
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Satoshi Miyairi
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Kazuya Omoto
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayoshi Okumi
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yasuyuki Ishii
- Cluster for Industry Partnerships (CIP), RIKEN, Yokohama, Japan
| | - Kazunari Tanabe
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
8
|
Pierini A, Iliopoulou BP, Peiris H, Pérez-Cruz M, Baker J, Hsu K, Gu X, Zheng PP, Erkers T, Tang SW, Strober W, Alvarez M, Ring A, Velardi A, Negrin RS, Kim SK, Meyer EH. T cells expressing chimeric antigen receptor promote immune tolerance. JCI Insight 2017; 2:92865. [PMID: 29046484 DOI: 10.1172/jci.insight.92865] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
Cellular therapies based on permanent genetic modification of conventional T cells have emerged as a promising strategy for cancer. However, it remains unknown if modification of T cell subsets, such as Tregs, could be useful in other settings, such as allograft transplantation. Here, we use a modular system based on a chimeric antigen receptor (CAR) that binds covalently modified mAbs to control Treg activation in vivo. Transient expression of this mAb-directed CAR (mAbCAR) in Tregs permitted Treg targeting to specific tissue sites and mitigated allograft responses, such as graft-versus-host disease. mAbCAR Tregs targeted to MHC class I proteins on allografts prolonged islet allograft survival and also prolonged the survival of secondary skin grafts specifically matched to the original islet allograft. Thus, transient genetic modification to produce mAbCAR T cells led to durable immune modulation, suggesting therapeutic targeting strategies for controlling alloreactivity in settings such as organ or tissue transplantation.
Collapse
Affiliation(s)
- Antonio Pierini
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA.,Department of Medicine, Hematopoietic Stem Cell Transplantation Program, University of Perugia, Perugia, Italy
| | - Bettina P Iliopoulou
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Heshan Peiris
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Magdiel Pérez-Cruz
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Katie Hsu
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Xueying Gu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Ping-Ping Zheng
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Tom Erkers
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Sai-Wen Tang
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - William Strober
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Maite Alvarez
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Aaron Ring
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA
| | - Andrea Velardi
- Department of Medicine, Hematopoietic Stem Cell Transplantation Program, University of Perugia, Perugia, Italy
| | - Robert S Negrin
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
| | - Everett H Meyer
- Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
9
|
Radu CA, Fischer S, Diehm Y, Hetzel O, Neubrech F, Dittmar L, Kleist C, Gebhard MM, Terness P, Kneser U, Kiefer J. The combination of mitomycin-induced blood cells with a temporary treatment of ciclosporin A prolongs allograft survival in vascularized composite allotransplantation. Langenbecks Arch Surg 2017; 403:83-92. [PMID: 28823033 DOI: 10.1007/s00423-017-1616-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 08/10/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Vascularized composite allotransplantation (VCA) is a rapidly expanding field of transplantation and provides a potential treatment for complex tissue defects. Peripheral blood mononuclear cells (PBMCs) shortly incubated with the antibiotic and chemotherapeutic agent mitomycin C (MMC) can suppress allogeneic T cell response and control allograft rejection in various organ transplantation models. MMC-incubated PBMCs (MICs) are currently being tested in a phase I clinical trial in kidney transplant patients. Previous studies with MICs in a complex VCA model showed the immunomodulatory potential of these cells. The aim of this study is to optimize and evaluate the use of MICs in combination with a standard immunosuppressive drug in VCA. METHODS Fully mismatched rats were used as hind limb donors [Lewis (RT11)] and recipients [Brown-Norway (RT1n)]. Sixty allogeneic hind limb transplantations were performed in six groups. Group A received donor-derived MICs combined with a temporary ciclosporin A (CsA) treatment. Group B received MICs in combination with a temporarily administered reduced dose of CsA. Group C served as a control and received a standard CsA dose temporarily without an additional administration of MICs, whereas Group D was solely medicated with a reduced CsA dose. Group E received no immunosuppressive therapy, neither CsA nor MICs. Group F was given a continuous standard immunosuppressive regimen consisting of CsA and prednisolone. The endpoint of the study was the onset of allograft rejection which was assessed clinically and histologically. RESULTS In group A and B, the rejection-free interval of the allograft was significantly prolonged to an average of 23.1 ± 1.7 and 24.7 ± 1.8 days compared to the corresponding control groups (p < 0.01). Rejection in groups C, D, and E was noted after 14.3 ± 1.1, 7.8 ± 0.7, and 6.9 ± 0.6 days. No rejection occurred in control group F during the follow-up period of 100 days. No adverse events have been noted. CONCLUSION The findings of this study show that the combination of MICs with a temporary CsA treatment significantly prolongs the rejection-free interval in a complex VCA model. The combination of MICs with CsA showed no adverse events such as graft-versus-host disease. MICs, which are generated by a simple and reliable in vitro technique, represent a potential therapeutic tool for prolonging allograft survival through immunomodulation.
Collapse
Affiliation(s)
- Christian Andreas Radu
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Sebastian Fischer
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Yannick Diehm
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Otto Hetzel
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Florian Neubrech
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Laura Dittmar
- Transplantation Immunology, Institute for Immunology, University of Heidelberg, Heidelberg, Germany
| | - Christian Kleist
- Transplantation Immunology, Institute for Immunology, University of Heidelberg, Heidelberg, Germany.,Department of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany
| | - Martha Maria Gebhard
- Department of Experimental Surgery, University of Heidelberg, Heidelberg, Germany
| | - Peter Terness
- Transplantation Immunology, Institute for Immunology, University of Heidelberg, Heidelberg, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Jurij Kiefer
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany.
| |
Collapse
|
10
|
TNF-α priming enhances CD4+FoxP3+ regulatory T-cell suppressive function in murine GVHD prevention and treatment. Blood 2016; 128:866-71. [PMID: 27365424 DOI: 10.1182/blood-2016-04-711275] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/26/2016] [Indexed: 01/06/2023] Open
Abstract
CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) have been shown to effectively prevent graft-versus-host disease (GVHD) when adoptively transferred in murine models of hematopoietic cell transplantation and in phase 1/2 clinical trials. Critical limitations to Treg clinical application are the paucity of cells and limited knowledge of the mechanisms of in vivo function. We hypothesized that inflammatory conditions in GVHD modify Treg characteristics and activity. We found that peripheral blood of recipient animals during acute GVHD (aGVHD) induces Treg activation and enhances their function. The serum contains high levels of tumor necrosis factor-α (TNF-α) that selectively activates Tregs without impacting CD4(+)FoxP3(-) T cells. TNF-α priming induces Treg in vivo proliferation, whereas it limits the ability of CD4 and CD8 conventional T cells (Tcons) to proliferate and induce GVHD. TNF-α-primed Tregs prolong animal survival as compared with unprimed Tregs when used at an unfavorable Treg:Tcon ratio, demonstrating enhanced in vivo efficacy of TNF-α-primed Tregs. Because TNF-α is produced by several immune cells during inflammation, our work elucidates aspects of the physiologic mechanisms of Treg function. Furthermore, TNF-α priming of Tregs provides a new tool to optimize Treg cellular therapies for GVHD prevention and treatment.
Collapse
|