1
|
Yilmaz H, Abdulazez IF, Gursoy S, Kazancioglu Y, Ustundag CB. Cartilage Tissue Engineering in Multilayer Tissue Regeneration. Ann Biomed Eng 2024:10.1007/s10439-024-03626-6. [PMID: 39400772 DOI: 10.1007/s10439-024-03626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
The functional and structural integrity of the tissue/organ can be compromised in multilayer reconstructive applications involving cartilage tissue. Therefore, multilayer structures are needed for cartilage applications. In this review, we have examined multilayer scaffolds for use in the treatment of damage to organs such as the trachea, joint, nose, and ear, including the multilayer cartilage structure, but we have generally seen that they have potential applications in trachea and joint regeneration. In conclusion, when the existing studies are examined, the results are promising for the trachea and joint connections, but are still limited for the nasal and ear. It may have promising implications in the future in terms of reducing the invasiveness of existing grafting techniques used in the reconstruction of tissues with multilayered layers.
Collapse
Affiliation(s)
- Hilal Yilmaz
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, Turkey.
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey.
| | - Israa F Abdulazez
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
- University of Baghdad Al-Khwarizmi College of Engineering Biomedical Engineering Departments, Baghdad, Iraq
| | - Sevda Gursoy
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, Turkey
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Yagmur Kazancioglu
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Cem Bulent Ustundag
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), Yildiz Technical University, Istanbul, Turkey
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
2
|
Kapat K, Gondane P, Kumbhakarn S, Takle S, Sable R. Challenges and Opportunities in Developing Tracheal Substitutes for the Recovery of Long-Segment Defects. Macromol Biosci 2024; 24:e2400054. [PMID: 39008817 DOI: 10.1002/mabi.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/21/2024] [Indexed: 07/17/2024]
Abstract
Tracheal resection and reconstruction procedures are necessary when stenosis, tracheomalacia, tumors, vascular lesions, or tracheal injury cause a tracheal blockage. Replacement with a tracheal substitute is often recommended when the trauma exceeds 50% of the total length of the trachea in adults and 30% in children. Recently, tissue engineering and other advanced techniques have shown promise in fabricating biocompatible tracheal substitutes with physical, morphological, biomechanical, and biological characteristics similar to native trachea. Different polymers and biometals are explored. Even with limited success with tissue-engineered grafts in clinical settings, complete healing of tracheal defects remains a substantial challenge due to low mechanical strength and durability of the graft materials, inadequate re-epithelialization and vascularization, and restenosis. This review has covered a range of reconstructive and regenerative techniques, design criteria, the use of bioprostheses and synthetic grafts for the recovery of tracheal defects, as well as the traditional and cutting-edge methods of their fabrication, surface modification for increased immuno- or biocompatibility, and associated challenges.
Collapse
Affiliation(s)
- Kausik Kapat
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Prashil Gondane
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Sakshi Kumbhakarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Shruti Takle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| | - Rahul Sable
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Kolkata, 168, Maniktala Main Road, Kankurgachi, Kolkata, West Bengal, 700054, India
| |
Collapse
|
3
|
Ndongo Sonfack DJ, Tanguay Boivin C, Touzel Deschênes L, Maurand T, Maguemoun C, Berthod F, Gros-Louis F, Champagne PO. Bioengineering Human Upper Respiratory Mucosa: A Systematic Review of the State of the Art of Cell Culture Techniques. Bioengineering (Basel) 2024; 11:826. [PMID: 39199784 PMCID: PMC11352167 DOI: 10.3390/bioengineering11080826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND The upper respiratory mucosa plays a crucial role in both the physical integrity and immunological function of the respiratory tract. However, in certain situations such as infections, trauma, or surgery, it might sustain damage. Tissue engineering, a field of regenerative medicine, has found applications in various medical fields including but not limited to plastic surgery, ophthalmology, and urology. However, its application to the respiratory system remains somewhat difficult due to the complex morphology and histology of the upper respiratory tract. To date, a culture protocol for producing a handleable, well-differentiated nasal mucosa has yet to be developed. The objective of this review is to describe the current state of research pertaining to cell culture techniques used for producing autologous healthy human upper respiratory cells and mucosal tissues, as well as describe its clinical applications. METHODS A search of the relevant literature was carried out with no time restriction across Embase, Cochrane, PubMed, and Medline Ovid databases. Keywords related to "respiratory mucosa" and "culture techniques of the human airway" were the focus of the search strategy for this review. The risk of bias in retained studies was assessed using the Joanna Briggs Institute's (JBI) critical appraisal tools for qualitative research. A narrative synthesis of our results was then conducted. RESULTS A total of 33 studies were included in this review, and thirteen of these focused solely on developing a cell culture protocol without further use. The rest of the studies used their own developed protocol for various applications such as cystic fibrosis, pharmacological, and viral research. One study was able to develop a promising model for nasal mucosa that could be employed as a replacement in nasotracheal reconstructive surgery. CONCLUSIONS This systematic review extensively explored the current state of research regarding cell culture techniques for producing tissue-engineered nasal mucosa. Bioengineering the nasal mucosa holds great potential for clinical use. However, further research on mechanical properties is essential, as the comparison of engineered tissues is currently focused on morphology rather than comprehensive mechanical assessments.
Collapse
Affiliation(s)
- Davaine Joel Ndongo Sonfack
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
- Laval University Neurosurgery Innovation Laboratory (LINUL), Quebec, QC G1J 5B3, Canada
- Department of Neurosurgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Clémence Tanguay Boivin
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
| | - Lydia Touzel Deschênes
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
- Laval University Neurosurgery Innovation Laboratory (LINUL), Quebec, QC G1J 5B3, Canada
| | - Thibault Maurand
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
| | - Célina Maguemoun
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
| | - François Berthod
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
| | - François Gros-Louis
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
| | - Pierre-Olivier Champagne
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada; (C.T.B.); (T.M.); (C.M.); (F.B.); (F.G.-L.); (P.-O.C.)
- LOEX, CHU de Québec—Laval University Research Center, Quebec, QC G1J 5B3, Canada;
- Laval University Neurosurgery Innovation Laboratory (LINUL), Quebec, QC G1J 5B3, Canada
- Department of Neurosurgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
4
|
Mammana M, Bonis A, Verzeletti V, Dell'Amore A, Rea F. Tracheal Tissue Engineering: Principles and State of the Art. Bioengineering (Basel) 2024; 11:198. [PMID: 38391684 PMCID: PMC10886658 DOI: 10.3390/bioengineering11020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
Patients affected by long-segment tracheal defects or stenoses represent an unsolved surgical issue, since they cannot be treated with the conventional surgery of tracheal resection and consequent anastomosis. Hence, different strategies for tracheal replacement have been proposed (synthetic materials, aortic allografts, transplantation, autologous tissue composites, and tissue engineering), each with advantages and drawbacks. Tracheal tissue engineering, on the other hand, aims at recreating a fully functional tracheal substitute, without the need for the patient to receive lifelong immunosuppression or endotracheal stents. Tissue engineering approaches involve the use of a scaffold, stem cells, and humoral signals. This paper reviews the main aspects of tracheal TE, starting from the choice of the scaffold to the type of stem cells that can be used to seed the scaffold, the methods for their culture and expansion, the issue of graft revascularization at the moment of in vivo implantation, and experimental models of tracheal research. Moreover, a critical insight on the state of the art of tracheal tissue engineering is also presented.
Collapse
Affiliation(s)
- Marco Mammana
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, 35128 Padua, Italy
| | - Alessandro Bonis
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, 35128 Padua, Italy
| | - Vincenzo Verzeletti
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, 35128 Padua, Italy
| | - Andrea Dell'Amore
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, 35128 Padua, Italy
| | - Federico Rea
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, 35128 Padua, Italy
| |
Collapse
|
5
|
Khalid T, Soriano L, Lemoine M, Cryan SA, O’Brien FJ, O’Leary C. Development of tissue-engineered tracheal scaffold with refined mechanical properties and vascularisation for tracheal regeneration. Front Bioeng Biotechnol 2023; 11:1187500. [PMID: 37346796 PMCID: PMC10281188 DOI: 10.3389/fbioe.2023.1187500] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction: Attempted tracheal replacement efforts thus far have had very little success. Major limiting factors have been the inability to efficiently re-vascularise and mimic the mechanical properties of native tissue. The major objective of this study was to optimise a previously developed collagen-hyaluronic acid scaffold (CHyA-B), which has shown to facilitate the growth of respiratory cells in distinct regions, as a potential tracheal replacement device. Methods: A biodegradable thermoplastic polymer was 3D-printed into different designs and underwent multi-modal mechanical assessment. The 3D-printed constructs were incorporated into the CHyA-B scaffolds and subjected to in vitro and ex vivo vascularisation. Results: The polymeric backbone provided sufficient strength to the CHyA-B scaffold, with yield loads of 1.31-5.17 N/mm and flexural moduli of 0.13-0.26 MPa. Angiogenic growth factor release (VEGF and bFGF) and angiogenic gene upregulation (KDR, TEK-2 and ANG-1) was detected in composite scaffolds and remained sustainable up to 14 days. Confocal microscopy and histological sectioning confirmed the presence of infiltrating blood vessel throughout composite scaffolds both in vitro and ex vivo. Discussion: By addressing both the mechanical and physiological requirements of tracheal scaffolds, this work has begun to pave the way for a new therapeutic option for large tracheal defects.
Collapse
Affiliation(s)
- Tehreem Khalid
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and Trinity College Dublin, Dublin, Ireland
| | - Luis Soriano
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Centre for Research in Biomedical Devices (CÚRAM), NUI Galway, Galway, Ireland
| | - Mark Lemoine
- Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and Trinity College Dublin, Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and Trinity College Dublin, Dublin, Ireland
- Centre for Research in Biomedical Devices (CÚRAM), NUI Galway, Galway, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and Trinity College Dublin, Dublin, Ireland
- Centre for Research in Biomedical Devices (CÚRAM), NUI Galway, Galway, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Cian O’Leary
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Stocco E, Barbon S, Mammana M, Zambello G, Contran M, Parnigotto PP, Macchi V, Conconi MT, Rea F, De Caro R, Porzionato A. Preclinical and clinical orthotopic transplantation of decellularized/engineered tracheal scaffolds: A systematic literature review. J Tissue Eng 2023; 14:20417314231151826. [PMID: 36874984 PMCID: PMC9974632 DOI: 10.1177/20417314231151826] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/04/2023] [Indexed: 03/07/2023] Open
Abstract
Severe tracheal injuries that cannot be managed by mobilization and end-to-end anastomosis represent an unmet clinical need and an urgent challenge to face in surgical practice; within this scenario, decellularized scaffolds (eventually bioengineered) are currently a tempting option among tissue engineered substitutes. The success of a decellularized trachea is expression of a balanced approach in cells removal while preserving the extracellular matrix (ECM) architecture/mechanical properties. Revising the literature, many Authors report about different methods for acellular tracheal ECMs development; however, only few of them verified the devices effectiveness by an orthotopic implant in animal models of disease. To support translational medicine in this field, here we provide a systematic review on studies recurring to decellularized/bioengineered tracheas implantation. After describing the specific methodological aspects, orthotopic implant results are verified. Furtherly, the only three clinical cases of compassionate use of tissue engineered tracheas are reported with a focus on outcomes.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| | - Silvia Barbon
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| | - Marco Mammana
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University Hospital of Padova, Padova, Italy
| | - Giovanni Zambello
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University Hospital of Padova, Padova, Italy
| | - Martina Contran
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| | - Veronica Macchi
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| | - Maria Teresa Conconi
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Federico Rea
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University Hospital of Padova, Padova, Italy
| | - Raffaele De Caro
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| | - Andrea Porzionato
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Padova, Italy
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Padova, Italy
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling-TES, Onlus, Padova, Italy
| |
Collapse
|
7
|
Lei C, Mei S, Zhou C, Xia C. Decellularized tracheal scaffolds in tracheal reconstruction: An evaluation of different techniques. J Appl Biomater Funct Mater 2021; 19:22808000211064948. [PMID: 34903089 DOI: 10.1177/22808000211064948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In humans, the trachea is a conduit for ventilation connecting the throat and lungs. However, certain congenital or acquired diseases may cause long-term tracheal defects that require replacement. Tissue engineering is considered a promising method to reconstruct long-segment tracheal lesions and restore the structure and function of the trachea. Decellularization technology retains the natural structure of the trachea, has good biocompatibility and mechanical properties, and is currently a hotspot in tissue engineering studies. This article lists various recent representative protocols for the generation of decellularized tracheal scaffolds (DTSs), as well as their validity and limitations. Based on the advancements in decellularization methods, we discussed the impact and importance of mechanical properties, revascularization, recellularization, and biocompatibility in the production and implantation of DTS. This review provides a basis for future research on DTS and its application in clinical therapy.
Collapse
Affiliation(s)
- Chenyang Lei
- Department of Otorhinolaryngology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Sheng Mei
- Department of Otorhinolaryngology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Chun Zhou
- Department of Geriatrics, The 903 Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Hangzhou, China
| | - Chen Xia
- Department of Orthopedic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
8
|
Mohd Yunus MH, Rashidbenam Z, Fauzi MB, Bt Hj Idrus R, Bin Saim A. Evaluating Feasibility of Human Tissue Engineered Respiratory Epithelium Construct as a Potential Model for Tracheal Mucosal Reconstruction. Molecules 2021; 26:molecules26216724. [PMID: 34771136 PMCID: PMC8587409 DOI: 10.3390/molecules26216724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
The normal function of the airway epithelium is vital for the host’s well-being. Conditions that might compromise the structure and functionality of the airway epithelium include congenital tracheal anomalies, infection, trauma and post-intubation injuries. Recently, the onset of COVID-19 and its complications in managing respiratory failure further intensified the need for tracheal tissue replacement. Thus far, plenty of naturally derived, synthetic or allogeneic materials have been studied for their applicability in tracheal tissue replacement. However, a reliable tracheal replacement material is missing. Therefore, this study used a tissue engineering approach for constructing tracheal tissue. Human respiratory epithelial cells (RECs) were isolated from nasal turbinate, and the cells were incorporated into a calcium chloride-polymerized human blood plasma to form a human tissue respiratory epithelial construct (HTREC). The quality of HTREC in vitro, focusing on the cellular proliferation, differentiation and distribution of the RECs, was examined using histological, gene expression and immunocytochemical analysis. Histological analysis showed a homogenous distribution of RECs within the HTREC, with increased proliferation of the residing RECs within 4 days of investigation. Gene expression analysis revealed a significant increase (p < 0.05) in gene expression level of proliferative and respiratory epithelial-specific markers Ki67 and MUC5B, respectively, within 4 days of investigation. Immunohistochemical analysis also confirmed the expression of Ki67 and MUC5AC markers in residing RECs within the HTREC. The findings show that calcium chloride-polymerized human blood plasma is a suitable material, which supports viability, proliferation and mucin secreting phenotype of RECs, and this suggests that HTREC can be a potential candidate for respiratory epithelial tissue reconstruction.
Collapse
Affiliation(s)
- Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia;
- Correspondence: ; Tel.: +60-123-137-644
| | - Zahra Rashidbenam
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Z.R.); (M.B.F.)
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Z.R.); (M.B.F.)
| | - Ruszymah Bt Hj Idrus
- Department of Physiology, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia;
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Z.R.); (M.B.F.)
| | - Aminuddin Bin Saim
- Ear, Nose & Throat Consultation Clinic, Ampang Puteri Specialist Hospital, Ampang 68000, Selangor, Malaysia;
| |
Collapse
|
9
|
de Wit R, Siddiqi S, Tiemessen D, Snabel R, Veenstra GJ, Oosterwijk E, Verhagen A. Isolation of multipotent progenitor cells from pleura and pericardium for tracheal tissue engineering purposes. J Cell Mol Med 2021; 25:10869-10878. [PMID: 34725901 PMCID: PMC8642678 DOI: 10.1111/jcmm.16916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering (TE) of long tracheal segments is conceptually appealing for patients with inoperable tracheal pathology. In tracheal TE, stem cells isolated from bone marrow or adipose tissue have been employed, but the ideal cell source has yet to be determined. When considering the origin of stem cells, cells isolated from a source embryonically related to the trachea may be more similar. In this study, we investigated the feasibility of isolating progenitor cells from pleura and pericard as an alternative cells source for tracheal tissue engineering. Porcine progenitor cells were isolated from pleura, pericard, trachea and adipose tissue and expanded in culture. Isolated cells were characterized by PCR, RNA sequencing, differentiation assays and cell survival assays and were compared to trachea and adipose‐derived progenitor cells. Progenitor‐like cells were successfully isolated and expanded from pericard and pleura as indicated by gene expression and functional analyses. Gene expression analysis and RNA sequencing showed a stem cell signature indicating multipotency, albeit that subtle differences between different cell sources were visible. Functional analysis revealed that these cells were able to differentiate towards chondrogenic, osteogenic and adipogenic lineages. Isolation of progenitor cells from pericard and pleura with stem cell features is feasible. Although functional differences with adipose‐derived stem cells were limited, based on their gene expression, pericard‐ and pleura‐derived stem cells may represent a superior autologous cell source for cell seeding in tracheal tissue engineering.
Collapse
Affiliation(s)
- Rayna de Wit
- Department of Cardio-thoracic surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sailay Siddiqi
- Department of Cardio-thoracic surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dorien Tiemessen
- Department of Urology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rebecca Snabel
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Science, Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Gert Jan Veenstra
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Science, Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Egbert Oosterwijk
- Department of Urology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ad Verhagen
- Department of Cardio-thoracic surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
10
|
Dang LH, Hung SH, Tseng Y, Quang LX, Le NTN, Fang CL, Tseng H. Partial Decellularized Scaffold Combined with Autologous Nasal Epithelial Cell Sheet for Tracheal Tissue Engineering. Int J Mol Sci 2021; 22:ijms221910322. [PMID: 34638663 PMCID: PMC8508999 DOI: 10.3390/ijms221910322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Decellularization has emerged as a potential solution for tracheal replacement. As a fully decellularized graft failed to achieve its purposes, the de-epithelialization partial decellularization protocol appeared to be a promising approach for fabricating scaffolds with preserved mechanical properties and few immune rejection responses after transplantation. Nevertheless, a lack of appropriate concurrent epithelialization treatment can lead to luminal stenosis of the transplant and impede its eventual success. To improve re-epithelialization, autologous nasal epithelial cell sheets generated by our cell sheet engineering platform were utilized in this study under an in vivo rabbit model. The newly created cell sheets have an intact and transplantable appearance, with their specific characteristics of airway epithelial origin being highly expressed upon histological and immunohistochemical analysis. Subsequently, those cell sheets were incorporated with a partially decellularized tracheal graft for autograft transplantation under tracheal partial resection models. The preliminary results two months post operation demonstrated that the transplanted patches appeared to be wholly integrated into the host trachea with adequate healing of the luminal surface, which was confirmed via endoscopic and histologic evaluations. The satisfactory result of this hybrid scaffold protocol could serve as a potential solution for tracheal reconstructions in the future.
Collapse
Affiliation(s)
- Luong Huu Dang
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (L.H.D.); (S.-H.H.)
- Department of Otolaryngology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 70000, Vietnam;
| | - Shih-Han Hung
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (L.H.D.); (S.-H.H.)
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Otolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Yuan Tseng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Ly Xuan Quang
- Department of Otolaryngology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 70000, Vietnam;
| | - Nhi Thao Ngoc Le
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan;
| | - Chia-Lang Fang
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - How Tseng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence:
| |
Collapse
|
11
|
Dang LH, Tseng Y, Tseng H, Hung SH. Partial Decellularization for Segmental Tracheal Scaffold Tissue Engineering: A Preliminary Study in Rabbits. Biomolecules 2021; 11:biom11060866. [PMID: 34200705 PMCID: PMC8230409 DOI: 10.3390/biom11060866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/24/2023] Open
Abstract
In this study, we developed a new procedure for the rapid partial decellularization of the harvested trachea. Partial decellularization was performed using a combination of detergent and sonication to completely remove the epithelial layers outside of the cartilage ring. The post-decellularized tracheal segments were assessed with vital staining, which showed that the core cartilage cells remarkably remained intact while the cells outside of the cartilage were no longer viable. The ability of the decellularized tracheal segments to evade immune rejection was evaluated through heterotopic implantation of the segments into the chest muscle of rabbits without any immunosuppressive therapy, which demonstrated no evidence of severe rejection or tissue necrosis under H&E staining, as well as the mechanical stability under stress-pressure testing. Finally, orthotopic transplantation of partially decellularized trachea with no immunosuppression treatment resulted in 2 months of survival in two rabbits and one long-term survival (2 years) in one rabbit. Through evaluations of posttransplantation histology and endoscopy, we confirmed that our partial decellularization method could be a potential method of producing low-immunogenic cartilage scaffolds with viable, functional core cartilage cells that can achieve long-term survival after in vivo transplantation.
Collapse
Affiliation(s)
- Luong Huu Dang
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Otolaryngology, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 70000, Vietnam
| | - Yuan Tseng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - How Tseng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (H.T.); (S.-H.H.)
| | - Shih-Han Hung
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Otolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Correspondence: (H.T.); (S.-H.H.)
| |
Collapse
|
12
|
Yonesi M, Garcia-Nieto M, Guinea GV, Panetsos F, Pérez-Rigueiro J, González-Nieto D. Silk Fibroin: An Ancient Material for Repairing the Injured Nervous System. Pharmaceutics 2021; 13:429. [PMID: 33806846 PMCID: PMC8004633 DOI: 10.3390/pharmaceutics13030429] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
Silk refers to a family of natural fibers spun by several species of invertebrates such as spiders and silkworms. In particular, silkworm silk, the silk spun by Bombyx mori larvae, has been primarily used in the textile industry and in clinical settings as a main component of sutures for tissue repairing and wound ligation. The biocompatibility, remarkable mechanical performance, controllable degradation, and the possibility of producing silk-based materials in several formats, have laid the basic principles that have triggered and extended the use of this material in regenerative medicine. The field of neural soft tissue engineering is not an exception, as it has taken advantage of the properties of silk to promote neuronal growth and nerve guidance. In addition, silk has notable intrinsic properties and the by-products derived from its degradation show anti-inflammatory and antioxidant properties. Finally, this material can be employed for the controlled release of factors and drugs, as well as for the encapsulation and implantation of exogenous stem and progenitor cells with therapeutic capacity. In this article, we review the state of the art on manufacturing methodologies and properties of fiber-based and non-fiber-based formats, as well as the application of silk-based biomaterials to neuroprotect and regenerate the damaged nervous system. We review previous studies that strategically have used silk to enhance therapeutics dealing with highly prevalent central and peripheral disorders such as stroke, Alzheimer's disease, Parkinson's disease, and peripheral trauma. Finally, we discuss previous research focused on the modification of this biomaterial, through biofunctionalization techniques and/or the creation of novel composite formulations, that aim to transform silk, beyond its natural performance, into more efficient silk-based-polymers towards the clinical arena of neuroprotection and regeneration in nervous system diseases.
Collapse
Affiliation(s)
- Mahdi Yonesi
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
| | | | - Gustavo V. Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Fivos Panetsos
- Silk Biomed SL, 28260 Madrid, Spain;
- Neurocomputing and Neurorobotics Research Group, Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Spain; (M.Y.); (G.V.G.)
- Silk Biomed SL, 28260 Madrid, Spain;
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
13
|
Recent advances in bioprinting technologies for engineering different cartilage-based tissues. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112005. [PMID: 33812625 DOI: 10.1016/j.msec.2021.112005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023]
Abstract
Inadequate self-repair and regenerative efficiency of the cartilage tissues has motivated the researchers to devise advanced and effective strategies to resolve this issue. Introduction of bioprinting to tissue engineering has paved the way for fabricating complex biomimetic engineered constructs. In this context, the current review gears off with the discussion of standard and advanced 3D/4D printing technologies and their implications for the repair of different cartilage tissues, namely, articular, meniscal, nasoseptal, auricular, costal, and tracheal cartilage. The review is then directed towards highlighting the current stem cell opportunities. On a concluding note, associated critical issues and prospects for future developments, particularly in this sphere of personalized medicines have been discussed.
Collapse
|
14
|
Preliminary Study on the Development of In Vitro Human Respiratory Epithelium Using Collagen Type I Scaffold as a Potential Model for Future Tracheal Tissue Engineering. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pathological conditions of the tracheal epithelium, such as postoperative injuries and chronic conditions, often compromise the functionality of the respiratory epithelium. Although replacement of the respiratory epithelium using various types of tracheal transplantation has been attempted, there is no predictable and dependable replacement method that holds for safe and practicable long-term use. Therefore, we used a tissue engineering approach for ex vivo regeneration of the respiratory epithelium (RE) construct. Collagen type I was isolated from sheep tendon and it was fabricated in a three-dimensional (3D) scaffold format. Isolated human respiratory epithelial cells (RECs) and fibroblasts from nasal turbinate were co-cultured on the 3D scaffold for 48 h, and epithelium maturation was allowed for another 14 days in an air–liquid interface culture system. The scanning electron microscope results revealed a fabricated porous-structure 3D collagen scaffold. The scaffold was found to be biocompatible with RECs and fibroblasts and allows cells attachment, proliferation, and migration. Immunohistochemical analysis showed that the seeded RECs and fibroblasts were positive for expression of cytokeratin 14 and collagen type I markers, respectively, indicating that the scaffold supports the native phenotype of seeded cells over a period of 14 days. Although a longer maturation period is needed for ciliogenesis to occur in RECs, the findings suggest that the tissue-engineered RE construct is a potential candidate for direct use in tracheal epithelium replacement or tracheal tube reengineering.
Collapse
|
15
|
Crowley C, Butler CR, Camilli C, Hynds RE, Kolluri KK, Janes SM, De Coppi P, Urbani L. Non-Invasive Longitudinal Bioluminescence Imaging of Human Mesoangioblasts in Bioengineered Esophagi. Tissue Eng Part C Methods 2020; 25:103-113. [PMID: 30648471 PMCID: PMC6389770 DOI: 10.1089/ten.tec.2018.0351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Esophageal engineering aims to create replacement solutions by generating hollow organs using a combination of cells, scaffolds, and regeneration-stimulating factors. Currently, the fate of cells on tissue-engineered grafts is generally determined retrospectively by histological analyses. Unfortunately, quality-controlled cell seeding protocols for application in human patients are not standard practice. As such, the field requires simple, fast, and reliable techniques for non-invasive, highly specific cell tracking. Here, we show that bioluminescence imaging (BLI) is a suitable method to track human mesoangioblast seeding of an esophageal tubular construct at every stage of the preclinical bioengineering pipeline. In particular, validation of BLI as longitudinal quantitative assessment of cell density, proliferation, seeding efficiency, bioreactor culture, and cell survival upon implantation in vivo was performed against standard methods in 2D cultures and in 3D decellularized esophageal scaffolds. The technique is simple, non-invasive, and provides information on mesoangioblast distribution over entire scaffolds. Bioluminescence is an invaluable tool in the development of complex bioartificial organs and can assist in the development of standardized cell seeding protocols, with the ability to track cells from bioreactor through to implantation.
Collapse
Affiliation(s)
- Claire Crowley
- 1 Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Children's Hospital, University College London, London, United Kingdom
| | - Colin R Butler
- 1 Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Children's Hospital, University College London, London, United Kingdom.,2 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Carlotta Camilli
- 1 Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Children's Hospital, University College London, London, United Kingdom
| | - Robert E Hynds
- 2 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Krishna K Kolluri
- 2 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Sam M Janes
- 2 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
| | - Paolo De Coppi
- 1 Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Children's Hospital, University College London, London, United Kingdom
| | - Luca Urbani
- 1 Stem Cells and Regenerative Medicine Section, UCL Institute of Child Health and Great Ormond Street Children's Hospital, University College London, London, United Kingdom.,3 Institute of Hepatology London, Foundation for Liver Research, London, United Kingdom
| |
Collapse
|
16
|
Muthialu N, Ramaswamy M, Beeman A, Yeh YT. Management of Tracheal Diseases in Children. Front Pediatr 2020; 8:297. [PMID: 32656164 PMCID: PMC7325888 DOI: 10.3389/fped.2020.00297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/11/2020] [Indexed: 11/17/2022] Open
Abstract
Tracheal pathology in children are primarily congenital. They can be considered primary or de novo, when this is seen as an inherent defect within the cartilages of the tracheal segment. While segmental cartilage defects are very rare, there are often occasions when one or more cartilages can be considered missing from the length of trachea, contributing to airway abnormality. Secondary tracheal pathologies can often be seen in relation to disorders affecting nearby vascular elements or thoracic cage in general. In general, the pathological entity of tracheal disorders can be classified into either tracheomalacia or tracheal stenosis.
Collapse
Affiliation(s)
- Nagarajan Muthialu
- Tracheal Team, Department of Cardiothoracic Surgery, Great Ormond Street Hospital, London, United Kingdom
| | - Madhavan Ramaswamy
- Tracheal Team, Department of Cardiothoracic Surgery, Great Ormond Street Hospital, London, United Kingdom
| | - Arun Beeman
- Tracheal Team, Department of Cardiothoracic Surgery, Great Ormond Street Hospital, London, United Kingdom
| | - Yi-Ting Yeh
- Tracheal Team, Department of Cardiothoracic Surgery, Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
17
|
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal Stem Cells for Regenerative Medicine. Cells 2019; 8:E886. [PMID: 31412678 PMCID: PMC6721852 DOI: 10.3390/cells8080886] [Citation(s) in RCA: 634] [Impact Index Per Article: 126.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
In recent decades, the biomedical applications of mesenchymal stem cells (MSCs) have attracted increasing attention. MSCs are easily extracted from the bone marrow, fat, and synovium, and differentiate into various cell lineages according to the requirements of specific biomedical applications. As MSCs do not express significant histocompatibility complexes and immune stimulating molecules, they are not detected by immune surveillance and do not lead to graft rejection after transplantation. These properties make them competent biomedical candidates, especially in tissue engineering. We present a brief overview of MSC extraction methods and subsequent potential for differentiation, and a comprehensive overview of their preclinical and clinical applications in regenerative medicine, and discuss future challenges.
Collapse
Affiliation(s)
- Yu Han
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Xuezhou Li
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yanbo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Yuping Han
- Department of Urology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
18
|
Zhou Q, Ye X, Ran Q, Kitahara A, Matsumoto Y, Moriyama M, Ajioka Y, Saijo Y. Trachea Engineering Using a Centrifugation Method and Mouse-Induced Pluripotent Stem Cells. Tissue Eng Part C Methods 2019; 24:524-533. [PMID: 30101671 DOI: 10.1089/ten.tec.2018.0115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The outcomes of tracheal transplantation for the treatment of airway stenosis are unsatisfactory. We investigated the feasibility of regeneration of the trachea using a rat decellularized tracheal scaffold and mouse-induced pluripotent stem (iPS) cells for in vivo transplantation. The rat trachea was first decellularized using a detergent/enzymatic treatment method. We successfully established a centrifugation method that can transplant cells onto the luminal surface of the decellularized rat tracheal scaffold circumferentially. Two types of mouse iPS cells were differentiated into definitive endoderm cells and transplanted onto the luminal surface of the decellularized tracheal matrix scaffold using this centrifugation method. For in vivo study, normal rat tracheas, no-cell rat tracheal scaffolds, or rat tracheal scaffolds recellularized with rat tracheal epithelial cells (EGV-4T) were orthotopically transplanted on F344 rats, and rat tracheal scaffolds recellularized with mouse iPS cells were transplanted on F344/NJc1-rnu/rnu rats. Rats transplanted with no-cell scaffolds or scaffolds recellularized with EGV-4T survived for 1 month, although airway stenosis was observed. One of the F344/NJc1-rnu/rnu rats transplanted with rat trachea regenerated using mouse iPS cells survived over 5 weeks. Histological analysis indicated the cause of death was airway stenosis due to colonic cellular proliferation of undifferentiated iPS cells. Re-epithelialization with numerous ciliated epithelial cells was observed in one of the rats transplanted with trachea bioengineered using iPS cells. In this study, we present a simple and efficient tracheal tissue engineering model using a centrifugation method in a small-animal model. Tissue-engineered trachea using decellularized tracheal scaffolds and iPS cells is potentially applicable for tracheal transplantation.
Collapse
Affiliation(s)
- Qiliang Zhou
- 1 Department of Medical Oncology and Niigata University Graduate School of Medical and Dental Sciences , Niigata, Japan
| | - Xulu Ye
- 1 Department of Medical Oncology and Niigata University Graduate School of Medical and Dental Sciences , Niigata, Japan
| | - Qingsong Ran
- 1 Department of Medical Oncology and Niigata University Graduate School of Medical and Dental Sciences , Niigata, Japan
| | - Akihiko Kitahara
- 2 Department of Thoracic Surgery, Niigata University Graduate School of Medical and Dental Sciences , Niigata, Japan
| | - Yoshifumi Matsumoto
- 1 Department of Medical Oncology and Niigata University Graduate School of Medical and Dental Sciences , Niigata, Japan
| | - Masato Moriyama
- 1 Department of Medical Oncology and Niigata University Graduate School of Medical and Dental Sciences , Niigata, Japan
| | - Yoichi Ajioka
- 3 Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences , Niigata, Japan
| | - Yasuo Saijo
- 1 Department of Medical Oncology and Niigata University Graduate School of Medical and Dental Sciences , Niigata, Japan
| |
Collapse
|
19
|
Williams DF. Challenges With the Development of Biomaterials for Sustainable Tissue Engineering. Front Bioeng Biotechnol 2019; 7:127. [PMID: 31214584 PMCID: PMC6554598 DOI: 10.3389/fbioe.2019.00127] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
The field of tissue engineering has tantalizingly offered the possibility of regenerating new tissue in order to treat a multitude of diseases and conditions within the human body. Nevertheless, in spite of significant progress with in vitro and small animal studies, progress toward realizing the clinical and commercial endpoints has been slow and many would argue that ultimate goals, especially in treating those conditions which, as yet, do not have acceptable conventional therapies, may never be reached because of flawed scientific rationale. In other words, sustainable tissue engineering may not be achievable with current approaches. One of the major factors here is the choice of biomaterial that is intended, through its use as a "scaffold," to guide the regeneration process. For many years, effective specifications for these biomaterials have not been well-articulated, and the requirements for biodegradability and prior FDA approval for use in medical devices, have dominated material selection processes. This essay argues that these considerations are not only wrong in principle but counter-productive in practice. Materials, such as many synthetic bioabsorbable polymers, which are designed to have no biological activity that could stimulate target cells to express new and appropriate tissue, will not be effective. It is argued here that a traditional 'scaffold' represents the wrong approach, and that tissue-engineering templates that are designed to replicate the niche, or microenvironment, of these target cells are much more likely to succeed.
Collapse
Affiliation(s)
- David F. Williams
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC, United States
- Strait Access Technologies, Cape Town, South Africa
| |
Collapse
|
20
|
Pepper V, Best CA, Buckley K, Schwartz C, Onwuka E, King N, White A, Dharmadhikari S, Reynolds SD, Johnson J, Grischkan J, Breuer CK, Chiang T. Factors Influencing Poor Outcomes in Synthetic Tissue-Engineered Tracheal Replacement. Otolaryngol Head Neck Surg 2019; 161:458-467. [PMID: 31035858 DOI: 10.1177/0194599819844754] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Humans receiving tissue-engineered tracheal grafts have experienced poor outcomes ultimately resulting in death or the need for graft explantation. We assessed the performance of the synthetic scaffolds used in humans with an ovine model of orthotopic tracheal replacement, applying standard postsurgical surveillance and interventions to define the factors that contributed to the complications seen at the bedside. STUDY DESIGN Large animal model. SETTING Pediatric academic research institute. SUBJECTS AND METHODS Human scaffolds were manufactured with an electrospun blend of polyethylene terephthalate and polyurethane reinforced with polycarbonate rings. They were seeded with autologous bone marrow-derived mononuclear cells and implanted in sheep. Animals were evaluated with routine bronchoscopy and fluoroscopy. Endoscopic dilation and stenting were performed to manage graft stenosis for up to a 4-month time point. Grafts and adjacent native airway were sectioned and evaluated with histology and immunohistochemistry. RESULTS All animals had signs of graft stenosis. Three of 5 animals (60%) designated for long-term surveillance survived until the 4-month time point. Graft dilation and stent placement resolved respiratory symptoms and prolonged survival. Necropsy demonstrated evidence of infection and graft encapsulation. Granulation tissue with signs of neovascularization was seen at the anastomoses, but epithelialization was never observed. Acute and chronic inflammation of the native airway epithelium was observed at all time points. Architectural changes of the scaffold included posterior wall infolding and scaffold delamination. CONCLUSIONS In our ovine model, clinically applied synthetic tissue-engineered tracheas demonstrated infectious, inflammatory, and mechanical failures with a lack of epithelialization and neovascularization.
Collapse
Affiliation(s)
- Victoria Pepper
- 1 Division of Pediatric Surgery, Loma Linda Children's Hospital, Loma Linda, California, USA
| | - Cameron A Best
- 2 Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,3 Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Kaila Buckley
- 4 Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Cynthia Schwartz
- 5 Department of Otolaryngology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Ekene Onwuka
- 6 Department of General Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Nakesha King
- 6 Department of General Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Audrey White
- 7 College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Sayali Dharmadhikari
- 2 Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,8 Department of Otolaryngology-Head and Neck Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Susan D Reynolds
- 9 Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jed Johnson
- 10 Nanofiber Solutions Inc, Hilliard, Ohio, USA
| | - Jonathan Grischkan
- 8 Department of Otolaryngology-Head and Neck Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Christopher K Breuer
- 2 Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,11 Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Tendy Chiang
- 2 Center for Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,8 Department of Otolaryngology-Head and Neck Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
21
|
Zhong Y, Yang W, Yin Pan Z, Pan S, Zhang SQ, Hao Wang Z, Gu S, Shi H. In vivo transplantation of stem cells with a genipin linked scaffold for tracheal construction. J Biomater Appl 2019; 34:47-60. [DOI: 10.1177/0885328219839193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yi Zhong
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Wenlong Yang
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Zi Yin Pan
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Shu Pan
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Si Quan Zhang
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Zhi Hao Wang
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Sijia Gu
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
| | - Hongcan Shi
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
22
|
Ng-Blichfeldt JP, Gosens R, Dean C, Griffiths M, Hind M. Regenerative pharmacology for COPD: breathing new life into old lungs. Thorax 2019; 74:890-897. [PMID: 30940772 DOI: 10.1136/thoraxjnl-2018-212630] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/09/2019] [Accepted: 02/25/2019] [Indexed: 11/04/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major global health concern with few effective treatments. Widespread destruction of alveolar tissue contributes to impaired gas exchange in severe COPD, and recent radiological evidence suggests that destruction of small airways is a major contributor to increased peripheral airway resistance in disease. This important finding might in part explain the failure of conventional anti-inflammatory treatments to restore lung function even in patients with mild disease. There is a clear need for alternative pharmacological strategies for patients with COPD/emphysema. Proposed regenerative strategies such as cell therapy and tissue engineering are hampered by poor availability of exogenous stem cells, discouraging trial results, and risks and cost associated with surgery. An alternative therapeutic approach is augmentation of lung regeneration and/or repair by biologically active factors, which have potential to be employed on a large scale. In favour of this strategy, the healthy adult lung is known to possess a remarkable endogenous regenerative capacity. Numerous preclinical studies have shown induction of regeneration in animal models of COPD/emphysema. Here, we argue that given the widespread and irreversible nature of COPD, serious consideration of regenerative pharmacology is necessary. However, for this approach to be feasible, a better understanding of the cell-specific molecular control of regeneration, the regenerative potential of the human lung and regenerative competencies of patients with COPD are required.
Collapse
Affiliation(s)
- John-Poul Ng-Blichfeldt
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK .,Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| | - Charlotte Dean
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Mark Griffiths
- National Heart and Lung Institute, Imperial College London, London, UK.,Barts Heart Centre, St Bartholomews Hospital, London, UK
| | - Matthew Hind
- National Heart and Lung Institute, Imperial College London, London, UK.,Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| |
Collapse
|
23
|
Hamilton NJ, Hynds RE, Gowers KH, Tait A, Butler CR, Hopper C, Burns AJ, Birchall MA, Lowdell M, Janes SM. Using a Three-Dimensional Collagen Matrix to Deliver Respiratory Progenitor Cells to Decellularized Trachea In Vivo. Tissue Eng Part C Methods 2019; 25:93-102. [PMID: 30648458 PMCID: PMC6389769 DOI: 10.1089/ten.tec.2018.0241] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022] Open
Abstract
IMPACT STATEMENT This article describes a method for engrafting epithelial progenitor cells to a revascularized scaffold in a protective and supportive collagen-rich environment. This method has the potential to overcome two key limitations of existing grafting techniques as epithelial cells are protected from mechanical shear and the relatively hypoxic phase that occurs while grafts revascularize, offering the opportunity to provide epithelial cells to decellularized allografts at the point of implantation. Advances in this area will improve the safety and efficacy of bioengineered organ transplantation.
Collapse
Affiliation(s)
- Nick J.I. Hamilton
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
- UCL Ear Institute, The Royal National Throat Nose and Ear Hospital, London, United Kingdom
| | - Robert E. Hynds
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Kate H.C. Gowers
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Angela Tait
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Colin R. Butler
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Colin Hopper
- Maxillofacial Surgery, Eastman Dental Institute, London, United Kingdom
| | - Alan J. Burns
- Stem Cell and Regenerative Medicine, Birth Defects Research Centre, UCL Great Ormond Institute of Child Health, London, United Kingdom
| | - Martin A. Birchall
- UCL Ear Institute, The Royal National Throat Nose and Ear Hospital, London, United Kingdom
| | - Mark Lowdell
- Institute of Immunity and Transplantation, Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital, London, United Kingdom
| | - Sam M. Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
24
|
Galvez Alegria C, Gundogdu G, Yang X, Costa K, Mauney JR. Evaluation of Acellular Bilayer Silk Fibroin Grafts for Onlay Tracheoplasty in a Rat Defect Model. Otolaryngol Head Neck Surg 2018; 160:310-319. [PMID: 30274546 DOI: 10.1177/0194599818802267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To assess the efficacy of acellular bilayer silk fibroin (BLSF) grafts to repair full-thickness tracheal defects and to compare the performance with conventional porcine small intestinal submucosa (SIS) implants. STUDY DESIGN A prospective controlled animal trial in a rat model of onlay tracheoplasty. SETTING Pediatric medical center. SUBJECTS AND METHODS Tracheal reconstruction of adult Sprague-Dawley rats was performed with BLSF (n = 38) or SIS (n = 32) matrices for up to 3 months of implantation. Functional evaluations of repaired conduits as well as histologic, immunohistochemical, and histomorphometric analyses of neotissues were assessed. RESULTS Prior to scheduled euthanasia, survival rates of rats receiving BLSF or SIS grafts were ≥94%, with no clinical signs of airway obstruction observed over the course of the study. Micro-computed tomography analysis revealed that the mean percentage of stenosis was <20% in both implant groups. BLSF and SIS grafts supported formation of pseudostratified ciliated columnar epithelium by 1 week postoperatively; however, each matrix failed to promote de novo chondrogenesis by 3 months following repair. CONCLUSIONS BLSF scaffolds can be used for reconstruction of rat tracheal patch defects with functional outcomes comparable to those of SIS matrices.
Collapse
Affiliation(s)
- Cinthia Galvez Alegria
- 1 Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, USA.,2 Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Gokhan Gundogdu
- 1 Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, USA.,2 Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Xuehui Yang
- 1 Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, USA.,2 Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Kyle Costa
- 1 Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, USA.,2 Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua R Mauney
- 1 Urological Diseases Research Center, Boston Children's Hospital, Boston, Massachusetts, USA.,2 Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Park JH, Park JY, Nam IC, Ahn M, Lee JY, Choi SH, Kim SW, Cho DW. A rational tissue engineering strategy based on three-dimensional (3D) printing for extensive circumferential tracheal reconstruction. Biomaterials 2018; 185:276-283. [PMID: 30261427 DOI: 10.1016/j.biomaterials.2018.09.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 01/12/2023]
Abstract
Extensive circumferential tracheal defects remain a major challenging problem in the field of tracheal reconstruction. In this study, a tissue-engineered tracheal graft based on three-dimensional (3D) printing was developed for extensive circumferential tracheal reconstruction. A native trachea-mimetic bellows scaffold, a framework for a tissue-engineered tracheal graft, was indirectly 3D printed and reinforced with ring-shaped bands made from medical grade silicone rubber. A tissue-engineered tracheal graft was then created by stratifying tracheal mucosa decellularized extracellular matrix (tmdECM) hydrogel on the luminal surface of the scaffold and transferring human inferior turbinate mesenchymal stromal cell (hTMSC) sheets onto the tmdECM hydrogel layer. The tissue-engineered tracheal graft with critical length was anastomosed end-to-end to the native trachea and complete re-epithelialization was achieved on the entire luminal surface within 2 months in a rabbit model with no post-operative complications. With this successful result, the present study reports the preliminary potential of the tissue-engineered tracheal graft as a rational tissue engineering strategy for extensive circumferential tracheal reconstruction.
Collapse
Affiliation(s)
- Jeong Hun Park
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ju Young Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Inn-Chul Nam
- Department of Otolaryngology and HNS, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Minjun Ahn
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jae Yeon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Seok Hwa Choi
- Veterinary Medical Center, Chungbuk National University, Cheongju, South Korea
| | - Sung Won Kim
- Department of Otolaryngology and HNS, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Department of Biomedical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
| |
Collapse
|
26
|
Regeneration of diaphragm with bio-3D cellular patch. Biomaterials 2018; 167:1-14. [DOI: 10.1016/j.biomaterials.2018.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 12/22/2022]
|