1
|
Hunsberger J, Simon C, Zylberberg C, Ramamoorthy P, Tubon T, Bedi R, Gielen K, Hansen C, Fischer L, Johnson J, Baraniak P, Mahdavi B, Pereira T, Hadjisavas M, Eaker S, Miller C. Improving patient outcomes with regenerative medicine: How the Regenerative Medicine Manufacturing Society plans to move the needle forward in cell manufacturing, standards, 3D bioprinting, artificial intelligence-enabled automation, education, and training. Stem Cells Transl Med 2020; 9:728-733. [PMID: 32222115 PMCID: PMC7308637 DOI: 10.1002/sctm.19-0389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
The Regenerative Medicine Manufacturing Society (RMMS) is the first and only professional society dedicated toward advancing manufacturing solutions for the field of regenerative medicine. RMMS's vision is to provide greater patient access to regenerative medicine therapies through innovative manufacturing solutions. Our mission is to identify unmet needs and gaps in regenerative medicine manufacturing and catalyze the generation of new ideas and solutions by working with private and public stakeholders. We aim to accomplish our mission through outreach and education programs and securing grants for public-private collaborations in regenerative medicine manufacturing. This perspective will cover four impact areas that the society's leadership team has identified as critical: (a) cell manufacturing and scale-up/out, respectively, for allogeneic and autologous cell therapies, (b) standards for regenerative medicine, (c) 3D bioprinting, and (d) artificial intelligence-enabled automation. In addition to covering these areas and ways in which the society intends to advance the field in a collaborative nature, we will also discuss education and training. Education and training is an area that is critical for communicating the current challenges, developing solutions to accelerate the commercialization of the latest technological advances, and growing the workforce in the rapidly expanding sector of regenerative medicine.
Collapse
Affiliation(s)
- Joshua Hunsberger
- Regenerative Medicine Manufacturing SocietyWinston‐SalemNorth CarolinaUSA
| | - Carl Simon
- National Institute of Standards and TechnologyGaithersburgMarylandUSA
| | | | | | | | - Ram Bedi
- University of WashingtonSeattleWashingtonUSA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Raman S, Srinivasan G, Brookhouser N, Nguyen T, Henson T, Morgan D, Cutts J, Brafman DA. A Defined and Scalable Peptide-Based Platform for the Generation of Human Pluripotent Stem Cell-Derived Astrocytes. ACS Biomater Sci Eng 2020; 6:3477-3490. [PMID: 32550261 PMCID: PMC7284803 DOI: 10.1021/acsbiomaterials.0c00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/06/2020] [Indexed: 01/07/2023]
Abstract
![]()
Astrocytes
comprise the most abundant cell type in the central
nervous system (CNS) and play critical roles in maintaining neural
tissue homeostasis. In addition, astrocyte dysfunction and death has
been implicated in numerous neurological disorders such as multiple
sclerosis, Alzheimer’s disease, amyotrophic lateral sclerosis
(ALS), and Parkinson’s disease (PD). As such, there is much
interest in using human pluripotent stem cell (hPSC)-derived astrocytes
for drug screening, disease modeling, and regenerative medicine applications.
However, current protocols for generation of astrocytes from hPSCs
are limited by the use of undefined xenogeneic components and two-dimensional
(2D) culture surfaces, which limits their downstream applications
where large-quantities of cells generated under defined conditions
are required. Here, we report the use of a completely synthetic, peptide-based
substrate that allows for the differentiation of highly pure populations
of astrocytes from several independent hPSC lines, including those
derived from patients with neurodegenerative disease. This substrate,
which we demonstrate is compatible with both conventional 2D culture
formats and scalable microcarrier (MC)-based technologies, leads to
the generation of cells that express high levels of canonical astrocytic
markers as well as display properties characteristic of functionally
mature cells including production of apolipoprotein E (ApoE), responsiveness
to inflammatory stimuli, ability to take up amyloid-β (Aβ),
and appearance of robust calcium transients. Finally, we show that
these astrocytes can be cryopreserved without any loss of functionality.
In the future, we anticipate that these methods will enable the development
of bioprocesses for the production of hPSC-derived astrocytes needed
for biomedical research and clinical applications.
Collapse
Affiliation(s)
- Sreedevi Raman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Gayathri Srinivasan
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States.,Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona 85004, United States
| | - Toan Nguyen
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Tanner Henson
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Daylin Morgan
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Joshua Cutts
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|