1
|
Liu J, Wan XX, Zheng SY, Khan MA, He HH, Feng YX, Xiao JG, Chen Y, Hu XM, Zhang Q, Xiong K. Mesenchymal Stem Cell Transplantation in Type 1 Diabetes Treatment: Current Advances and Future Opportunity. Curr Stem Cell Res Ther 2024; 19:1175-1184. [PMID: 37817652 DOI: 10.2174/011574888x268740231002054459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 10/12/2023]
Abstract
Type 1 Diabetes (T1D) is characterized by hyperglycemia, and caused by a lack of insulin secretion. At present there is no cure for T1D and patients are dependent on exogenous insulin for lifelong, which seriously affects their lives. Mesenchymal stem cells (MSCs) can be differentiated to β cell-like cells to rescue the secretion of insulin and reconstruct immunotolerance to preserve the function of islet β cells. Due to the higher proportion of children and adolescents in T1D patients, the efficacy and safety issue of the application of MSC's transplant in T1D was primarily demonstrated and identified by human clinical trials in this review. Then we clarified the mechanism of MSCs to relieve the symptom of T1D and found out that UC-MSCs have no obvious advantage over the other types of MSCs, the autologous MSCs from BM or menstrual blood with less expanded ex vivo could be the better choice for clinical application to treat with T1D through documentary analysis. Finally, we summarized the advances of MSCs with different interventions such as genetic engineering in the treatment of T1D, and demonstrated the advantages and shortage of MSCs intervened by different treatments in the transplantation, which may enhance the clinical efficacy and overcome the shortcomings in the application of MSCs to T1D in future.
Collapse
Affiliation(s)
- Jie Liu
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Sheng-Yuan Zheng
- Clinical Medicine Eight-year Program, 19 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | | | - Hui-Hong He
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yu-Xing Feng
- Clinical Medicine Eight-year Program, 19 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Jing-Ge Xiao
- Clinical Medicine Eight-year Program, 19 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yu Chen
- Clinical Medicine Eight-year Program, 19 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Xi-Min Hu
- Clinical Medicine Eight-year Program, 17 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, 57119, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, 57119, China
- Hunan Key Laboratory of Ophthalmology, Changsha, 410008, China
| |
Collapse
|
2
|
Atamanyuk NI, Andreev SS, Peretykin AA, Styazhkina EV, Obvintseva NA, Tryapitsina GA, Pryakhin EA. Humanized Mice as a Model to Assess the Response of Human Hematopoietic Stem Cells to Irradiation. Bull Exp Biol Med 2023; 176:34-37. [PMID: 38091132 DOI: 10.1007/s10517-023-05962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 12/19/2023]
Abstract
NOD SCID mice were humanized by transplanting human hematopoietic cells isolated from umbilical cord blood. A dose-dependent death of hematopoietic cells and their subsequent recovery were shown after acute external γ-irradiation in the model of humanized mice. The proposed approach can be used for preclinical studies of radioprotective agents and for assessment of the impact of adverse factors on the survival rate and functional properties of human hematopoietic stem cells in vivo.
Collapse
Affiliation(s)
- N I Atamanyuk
- Urals Research Center for Radiation Medicine, Federal Medical-Biological Agency of Russia, Chelyabinsk, Russia.
| | - S S Andreev
- Urals Research Center for Radiation Medicine, Federal Medical-Biological Agency of Russia, Chelyabinsk, Russia
| | - A A Peretykin
- Urals Research Center for Radiation Medicine, Federal Medical-Biological Agency of Russia, Chelyabinsk, Russia
| | - E V Styazhkina
- Urals Research Center for Radiation Medicine, Federal Medical-Biological Agency of Russia, Chelyabinsk, Russia
- Chelyabinsk State University, Chelyabinsk, Russia
| | - N A Obvintseva
- Urals Research Center for Radiation Medicine, Federal Medical-Biological Agency of Russia, Chelyabinsk, Russia
| | - G A Tryapitsina
- Urals Research Center for Radiation Medicine, Federal Medical-Biological Agency of Russia, Chelyabinsk, Russia
- Chelyabinsk State University, Chelyabinsk, Russia
| | - E A Pryakhin
- Urals Research Center for Radiation Medicine, Federal Medical-Biological Agency of Russia, Chelyabinsk, Russia
| |
Collapse
|
3
|
Yang Q, Qin B, Hou W, Qin H, Yin F. Pathogenesis and therapy of radiation enteritis with gut microbiota. Front Pharmacol 2023; 14:1116558. [PMID: 37063268 PMCID: PMC10102376 DOI: 10.3389/fphar.2023.1116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
Radiotherapy is widely used in clinic due to its good effect for cancer treatment. But radiotherapy of malignant tumors in the abdomen and pelvis is easy to cause radiation enteritis complications. Gastrointestinal tract contains numerous microbes, most of which are mutualistic relationship with the host. Abdominal radiation results in gut microbiota dysbiosis. Microbial therapy can directly target gut microbiota to reverse microbiota dysbiosis, hence relieving intestinal inflammation. In this review, we mainly summarized pathogenesis and novel therapy of the radiation-induced intestinal injury with gut microbiota dysbiosis and envision the opportunities and challenges of radiation enteritis therapy.
Collapse
Affiliation(s)
- Qilin Yang
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- School of Clinical Medicine of Nanjing Medical University, Nanjing, China
| | - Bingzhi Qin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Weiliang Hou
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| | - Huanlong Qin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| | - Fang Yin
- Research Institute of Intestinal Diseases, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Weiliang Hou, ; Huanlong Qin, ; Fang Yin,
| |
Collapse
|
4
|
Bieńko K, Leszcz M, Więckowska M, Białek J, Petniak A, Szymanowski R, Wilińska A, Piszcz B, Krzyżanowski A, Kwaśniewska A, Płachno BJ, Gil-Kulik P, Kocki J. VEGF Expression in Umbilical Cord MSC Depends on the Patient's Health, the Week of Pregnancy in Which the Delivery Took Place, and the Body Weight of the Newborn - Preliminary Report. Stem Cells Cloning 2023; 16:5-18. [PMID: 37139466 PMCID: PMC10150760 DOI: 10.2147/sccaa.s399303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/15/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Cells collected from Wharton's jelly are a rich source of mesenchymal stem cells. They can be easily obtained and grown using the adhesive method. They produce many types of proteins, including VEGF. Their role is to participate in angiogenesis, vasodilation, stimulation of cells to migrate, and chemotactic activity. The aim of this study was to evaluate expression of genes from the vascular endothelial growth factor family: VEGFA, VEGFB and VEGFC in MSC and the analysis of dependence of the expression of the studied genes on clinical factors related to the course of pregnancy and childbirth, and health of mother and child. Material and Methods The research material was an umbilical cord obtained from 40 patients hospitalized in the Department of Obstetrics and Pathology of Pregnancy of the Independent Public Clinical Hospital No.1 in Lublin. The age of the women was 21-46, all gave birth by cesarean section. Some of the patients suffered from hypertension and hypothyroidism. Material collected from patients immediately after delivery was subjected to enzymatic digestion with type I collagenase. The isolated cells were then cultured in adherent conditions, and then gene expression was assessed using qPCR and the immunophenotype of the cells was assessed cytometrically. Results Conducted studies have shown significant differences in expression of VEGF family genes depending on clinical condition of mother and child. Significant differences in VEGF-family gene expression level in umbilical cord MSC collected from women with hypothyroidism, hypertension, time of labor and birth weight of the baby were shown. Conclusion Probably due to hypoxia (caused, for example, by hypothyroidism or hypertension), the MSCs found in the umbilical cord may react with an increased expression of VEGF and a compensatory increase in the amount of secreted factor, the aim of which is, i.a., vasodilation and increase of blood supply to the fetus through the umbilical vessels.
Collapse
Affiliation(s)
- Karolina Bieńko
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Monika Leszcz
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Marta Więckowska
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Justyna Białek
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Rafał Szymanowski
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Wilińska
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Bartosz Piszcz
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, Lublin, Poland
- Doctoral School, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Krzyżanowski
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, Lublin, Poland
| | - Anna Kwaśniewska
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, Lublin, Poland
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Paulina Gil-Kulik
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
- Correspondence: Paulina Gil-Kulik, Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., Lublin, 20-080, Poland, Email
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|