1
|
Zhang X, Zhang L, Tian J, Li Y, Wu M, Zhang L, Qin X, Gong L. The application and prospects of drug delivery systems in idiopathic pulmonary fibrosis. BIOMATERIALS ADVANCES 2025; 168:214123. [PMID: 39615374 DOI: 10.1016/j.bioadv.2024.214123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease primarily affecting elderly individuals aged >65 years and has a poor prognosis. No effective treatment is currently available for IPF. The two antipulmonary fibrosis drugs nintedanib and pirfenidone approved by the FDA in the United States have somewhat decelerated IPF progression. However, the side effects of these drugs can lead to poor patient tolerance and compliance with the medications. Researchers have recently developed various methods for IPF treatment, such as gene silencing and pathway inhibitors, which hold great promise in IPF treatment. Nevertheless, the nonselectivity and nonspecificity of drugs often affect their efficacies. Drug delivery systems (DDS) are crucial for delivering drugs to specific target tissues or cells, thereby minimizing potential side effects, enhancing drug bioavailability, and reducing lung deposition. This review comprehensively summarizes the current state of DDS and various delivery strategies for IPF treatment (e.g., nano-delivery, hydrogel delivery, and biological carrier delivery) to completely expound the delivery mechanisms of different drug delivery carriers. Subsequently, the advantages and disadvantages of different DDS are fully discussed. Finally, the challenges and difficulties associated with the use of different DDS are addressed so as to accelerate their rapid clinical translation.
Collapse
Affiliation(s)
- Xi Zhang
- School of Biological Engineering, Zunyi Medical University, Guangdong 519000, China; Department of Clinical Medicine, The Fifth Clinical Institution, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Jiahua Tian
- Department of Clinical Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yunfei Li
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Manli Wu
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Longju Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Xiaofei Qin
- School of Biological Engineering, Zunyi Medical University, Guangdong 519000, China.
| | - Ling Gong
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China.
| |
Collapse
|
2
|
Zhang L, Shi J, Zhu MH, Huang Y, Lu Q, Sun P, Chen HZ, Lai X, Fang C. Liposomes-enabled cancer chemoimmunotherapy. Biomaterials 2025; 313:122801. [PMID: 39236630 DOI: 10.1016/j.biomaterials.2024.122801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Chemoimmunotherapy is an emerging paradigm in the clinic for treating several malignant diseases, such as non-small cell lung cancer, breast cancer, and large B-cell lymphoma. However, the efficacy of this strategy is still restricted by serious adverse events and a high therapeutic termination rate, presumably due to the lack of tumor-targeted distribution of both chemotherapeutic and immunotherapeutic agents. Targeted drug delivery has the potential to address this issue. Among the most promising nanocarriers in clinical translation, liposomes have drawn great attention in cancer chemoimmunotherapy in recent years. Liposomes-enabled cancer chemoimmunotherapy has made significant progress in clinics, with impressive therapeutic outcomes. This review summarizes the latest preclinical and clinical progress in liposome-enabled cancer chemoimmunotherapy and discusses the challenges and future directions of this field.
Collapse
Affiliation(s)
- Lele Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiangpei Shi
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mao-Hua Zhu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanhu Huang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qin Lu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Peng Sun
- Department of General Surgery, Tongren Hospital, SJTU-SM, Shanghai, 200336, China
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xing Lai
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chao Fang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China.
| |
Collapse
|
3
|
Tang L, Yang X, He L, Zhu C, Chen Q. Preclinical advance in nanoliposome-mediated photothermal therapy in liver cancer. Lipids Health Dis 2025; 24:31. [PMID: 39891269 PMCID: PMC11783920 DOI: 10.1186/s12944-024-02429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/31/2024] [Indexed: 02/03/2025] Open
Abstract
Liver cancer is a highly lethal malignant tumor with a high incidence worldwide. Therefore, its treatment has long been a focus of medical research. Although traditional treatment methods such as surgery, radiotherapy, and chemotherapy have increased the survival rate of patients, their efficacy remains unsatisfactory owing to the nonspecific distribution of drugs, high toxicity, and drug resistance of tumor tissues. In recent years, the application of nanotechnology in the medical field has opened a new avenue for the treatment of liver cancer. Among these treatment methods, photothermal therapy (PTT) based on nanoliposomes has attracted wide attention owing to its unique targeting and high efficiency. This article reviews the latest preclinical research progress of nanoliposome-based PTT for liver cancer and its metastasis, discusses the preclinical challenges in this field, and proposes directions for improvement, with the aim of improving the effectiveness of liver cancer treatment.
Collapse
Affiliation(s)
- Lixuan Tang
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiao Yang
- The department of oncology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Liwen He
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chaogeng Zhu
- The department of hepatobiliary pancreatic hernia surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Qingshan Chen
- The department of hepatobiliary pancreatic hernia surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
4
|
Azimizonuzi H, Ghayourvahdat A, Ahmed MH, Kareem RA, Zrzor AJ, Mansoor AS, Athab ZH, Kalavi S. A state-of-the-art review of the recent advances of theranostic liposome hybrid nanoparticles in cancer treatment and diagnosis. Cancer Cell Int 2025; 25:26. [PMID: 39871316 PMCID: PMC11773959 DOI: 10.1186/s12935-024-03610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/10/2024] [Indexed: 01/29/2025] Open
Abstract
Theranostics is a way of treating illness that blends medicine with testing. Specific characteristics should be present in the best theranostic agents for cancer: (1) the drugs should be safe and non-toxic; (2) they should be able to treat cancer selectively; and (3) they should be able to build up only in the cancerous tissue. Liposomes (LPs) are one of the most efficient drug delivery methods based on nanotechnology. Stealth LPs and commercial LPs have recently had an impact on cancer treatment. Using the valuable information from each imaging technique, along with the multimodality imaging functionality of liposomal therapeutic agents, makes them very appealing for personalized monitoring of how well therapeutic drugs are working against cancer in vivo and for predicting how well therapies will work. On the other hand, their use as nanoparticle delivery systems is currently in the research and development phase. Nanoscale delivery system innovation has made LP-nanoparticle hybrid structures very useful for combining therapeutic and imaging methods. LP-hybrid nanoparticles are better at killing cancer cells than their LP counterparts, making them excellent options for in vivo and in vitro drug delivery applications. Hybrid liposomes (HLs) could be used in the future as theranostic carriers to find and treat cancer targets. This would combine the best features of synthetic and biological drug delivery systems. Overarchingly, this article provided a comprehensive overview of the many LP types used in cancer detection, therapy, and theranostic analysis. An evaluation of the pros and cons of the many HLs types used in cancer detection and treatment has also been conducted. The study also included recent and significant research on HLs for cancer theranostic applications. We conclude by outlining the potential benefits and drawbacks of this theranostic approach to the concurrent detection and treatment of different malignancies, as well as its prospects.
Collapse
Affiliation(s)
- Hannaneh Azimizonuzi
- Inventor Member of International Federation of Inventors Associations, Geneva, Switzerland
| | - Arman Ghayourvahdat
- Inventor Member of International Federation of Inventors Associations, Geneva, Switzerland
| | | | | | - Athmar Jaber Zrzor
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Shaylan Kalavi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Aundhia C, Parmar G, Talele C, Talele D, Seth AK. Light Sensitive Liposomes: A Novel Strategy for Targeted Drug Delivery. Pharm Nanotechnol 2025; 13:41-54. [PMID: 38279711 DOI: 10.2174/0122117385271651231228073850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 01/28/2024]
Abstract
Light-sensitive liposomes have emerged as a promising platform for drug delivery, offering the potential for precise control over drug release and targeted therapy. These lipid-based nanoparticles possess photoresponsive properties, allowing them to undergo structural changes or release therapeutic payloads upon exposure to specific wavelengths of light. This review presents an overview of the design principles, fabrication methods, and applications of light-sensitive liposomes in drug delivery. Further, this article also discusses the incorporation of light-sensitive moieties, such as azobenzene, spiropyran, and diarylethene, into liposomal structures, enabling spatiotemporal control over drug release. The utilization of photosensitizers and imaging agents to enhance the functionality and versatility of light-sensitive liposomes is also highlighted. Finally, the recent advances, challenges, and future directions in the field, emphasizing the potential for these innovative nanocarriers to revolutionize targeted therapeutics, are also discussed.
Collapse
Affiliation(s)
- Chintan Aundhia
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Ghanshyam Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Chitrali Talele
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| | - Dipali Talele
- Faculty of Pharmacy, Vishwakarma University, Survey No. 2,3,4 Laxmi Nagar, Kondhwa Budruk, Pune, India
| | - Avinsh Kumar Seth
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara, 391760, Gujarat, India
| |
Collapse
|
6
|
Pourmasoumi P, Banihashemian SA, Zamani F, Rasouli-Nia A, Mehrabani D, Karimi-Busheri F. Nanoparticle-Based Approaches in the Diagnosis and Treatment of Brain Tumors. J Clin Med 2024; 13:7449. [PMID: 39685907 DOI: 10.3390/jcm13237449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastomas are highly invasive brain tumors among perilous diseases. They are characterized by their fast proliferation and delayed detection that render them a significant focal point for medical research endeavors within the realm of cancer. Among glioblastomas, Glioblastoma multiforme (GBM) is the most aggressive and prevalent malignant brain tumor. For this, nanomaterials such as metallic and lipid nanoparticles and quantum dots have been acknowledged as efficient carriers. These nano-materials traverse the blood-brain barrier (BBB) and integrate and reach the necessary regions for neuro-oncology imaging and treatment purposes. This paper provides a thorough analysis on nanoparticles used in the diagnosis and treatment of brain tumors, especially for GBM.
Collapse
Affiliation(s)
- Parvin Pourmasoumi
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 19395-1495, Iran
- Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 14778-93780, Iran
| | - Seyed Abdolvahab Banihashemian
- Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran 19395-1495, Iran
- Stem Cells Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran 14778-93780, Iran
| | - Farshid Zamani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-69411, Iran
| | - Aghdass Rasouli-Nia
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Davood Mehrabani
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Feridoun Karimi-Busheri
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
7
|
Qiao JX, Guo DY, Tian H, Wang ZP, Fan QQ, Tian Y, Sun J, Zhang XF, Zou JB, Cheng JX, Luan F, Zhai BT. Research progress of paclitaxel nanodrug delivery system in the treatment of triple-negative breast cancer. Mater Today Bio 2024; 29:101358. [PMID: 39677523 PMCID: PMC11638641 DOI: 10.1016/j.mtbio.2024.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, characterized by the loss or low expression of estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2) and progesterone receptor (PR). Due to the lack of clear therapeutic targets, paclitaxel (PTX) is often used as a first-line standard chemotherapy drug for the treatment of high-risk and locally advanced TNBC. PTX is a diterpenoid alkaloid extracted and purified from Taxus plants, functioning as an anticancer agent by inducing and promoting tubulin polymerization, inhibiting spindle formation in cancer cells, and preventing mitosis. However, its clinical application is limited by low solubility and high toxicity. Nanodrug delivery system (NDDS) is one of the feasible methods to improve the water solubility of PTX and reduce side effects. In this review, we summarize the latest advancements in PTX-targeted NDDS, as well as its combination with other codelivery therapies for TNBC treatment. NDDS includes passive targeting, active targeting, stimuli-responsive, codelivery, and multimode strategies. These systems have good prospects in improving the bioavailability of PTX, enhancing tumor targeting, reducing toxicity, controlling drug release, and reverse tumor multidrug resistance (MDR). This review provides valuable insights into the clinical development and application of PTX-targeted NDDS in the treatment of TNBC.
Collapse
Affiliation(s)
- Jia-xin Qiao
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Dong-yan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Huan Tian
- Department of Pharmacy, National Old Pharmacist Inheritance Studio, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, 710021, China
| | - Zhan-peng Wang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Qiang-qiang Fan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Yuan Tian
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Xiao-fei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jun-bo Zou
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Jiang-xue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Fei Luan
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Bing-tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| |
Collapse
|
8
|
Bal T, Anjrini N, Zeroual M. Recent Advances and Challenges in Targeted Drug Delivery Using Biofunctional Coatings. MEDICAL APPLICATIONS FOR BIOCOMPATIBLE SURFACES AND COATINGS 2024:41-75. [DOI: 10.1039/9781837675555-00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Globally, clinics are overwhelmed by drugs targeting undesired cells and organs, causing adverse systemic effects on the body. This shortfall in targeting specificity, safety, and efficiency has noticeably contributed to the failure of the bench-to-bedside transition. Activation or impairment of immune activity due to a misdirected drug and its carrier fuels complications, extending the range of destruction which can convert the course of disease into a life-threatening route. To address these great challenges, advanced coatings as indispensable components of future medicine have been investigated over the last few decades for precisely targeted drug delivery to achieve favorable prognoses in the treatment of a broad spectrum of diseases. Complemented by advancements in the pharmacological parameters, these systems hold great promise for the field. This chapter aims to discuss recent progress on new coatings for targeted drug delivery and the parameters for manufacturing these platforms for their cargo based on major determinants such as biocompatibility and bioactivity. A brief overview of the various applications of targeted drug delivery with functional coatings is also provided to offer a new perspective on the field.
Collapse
Affiliation(s)
- Tugba Bal
- aDepartment of Bioengineering, Graduate School of Sciences, Uskudar University, 34662, Istanbul, Turkiye
- bDepartment of Bioengineering, Faculty of Engineering and Natural Sciences, Uskudar University, 34662, Istanbul, Turkiye
| | - Nasma Anjrini
- aDepartment of Bioengineering, Graduate School of Sciences, Uskudar University, 34662, Istanbul, Turkiye
| | - Meryem Zeroual
- aDepartment of Bioengineering, Graduate School of Sciences, Uskudar University, 34662, Istanbul, Turkiye
| |
Collapse
|
9
|
Kosti EM, Sotiropoulou H, Tsichlis I, Tsakiri M, Naziris N, Demetzos C. Impact of Pluronic F-127 on the Stability of Quercetin-Loaded Liposomes: Insights from DSC Preformulation Studies. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5454. [PMID: 39597287 PMCID: PMC11595950 DOI: 10.3390/ma17225454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
The aim of the present study is to evaluate the stability of DMPC:Pluronic F-127 and DPPC:Pluronic F-127 liposomes, both with and without incorporated quercetin. Quercetin belongs to the class of flavonoids and has shown antioxidant, antiviral, anti-inflammatory, anti-cancer, and antimicrobial activities. Dynamic light scattering, electrophoretic light scattering, and differential scanning calorimetry (DSC) were utilized to investigate the cooperative behavior between liposomal components and its effect on stability. All formulations were stored at 4 °C and 25 °C and studied over 42 days. Furthermore, the interaction of the final formulations with serum proteins was assessed to evaluate the potential of Pluronic F-127 as a stabilizer in these liposomal nanosystems. This study highlights the impact of DSC in preformulation evaluations by correlating thermal behavior with quercetin incorporation and variations in size and the polydispersity index. According to the results, quercetin increased the fluidity and stability of liposomal nanosystems, while Pluronic F-127 was not sufficient for effective steric stabilization. Additionally, DSC thermograms revealed the integration of Pluronic F-127 into lipid membranes and showed phase separation in the DMPC nanosystem. In conclusion, the results indicate that the DPPC:Pluronic F-127:quercetin nanosystem exhibited the desired physicochemical and thermotropic properties for the effective delivery of quercetin for pharmaceutical purposes.
Collapse
Affiliation(s)
| | | | | | | | | | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece; (E.-M.K.); (H.S.); (I.T.); (M.T.)
| |
Collapse
|
10
|
Pem B, Liu Q, Pašalić L, Edely M, de la Chapelle ML, Bakarić D. Uncoated gold nanoparticles create fewer and less localized defects in model prokaryotic than in model eukaryotic lipid membranes. Colloids Surf B Biointerfaces 2024; 243:114158. [PMID: 39137531 DOI: 10.1016/j.colsurfb.2024.114158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
The rise of the populations of antibiotic resistant bacteria represents an increasing threat to human health. In addition to the synthesis of new antibiotics, which is an extremely expensive and time-consuming process, one of the ways to combat bacterial infections is the use of gold nanoparticles (Au NPs) as the vehicles for targeted delivery of therapeutic drugs. Since such a strategy requires the investigation of the effect of Au NPs (with and without drugs) on both bacterial and human cells, we investigated how the presence of coating-free Au NPs affects the physicochemical properties of lipid membranes that model prokaryotic (PRO) and eukaryotic (EU) cells. PRO/EU systems prepared as multilamellar liposomes (MLVs) and hybrid structures (HSs) from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG)/1,2-dipalmitoyl-sn-glycero-3-phosphoserine (DPPS) in the absence (MLVs)/presence (HSs) of differently distributed Au NPs (sizes ∼20 nm) reported stabilization of the gel phase of PRO systems in comparison with EU one (DSC data of PRO/EU were Tm(MLVs) ≈ 41.8 °C/42.0 °C, Tm¯ (HSs) ≈ 43.1 °C/42.4 °C, whereas UV-Vis response Tm(MLVs) ≈ 41.5 °C/42.0 °C, Tm¯ (HSs) ≈ 42.9 °C/41.1 °C). Vibrational spectroscopic data unraveled a substantial impact of Au NPs on the non-polar part of lipid bilayers, emphasizing the increase of kink and gauche conformers of the hydrocarbon chain. By interpreting the latter as Au NPs-induced defects, which exert the greatest effect when Au NPs are found exclusively outside the lipid membrane, these findings suggested that Au NPs reduced the compactness of EU-based lipid bilayers much more than in analogous PRO systems. Since the uncoated Au NPs manifested adverse effects when applied as antimicrobials, the results obtained in this work contribute towards recognizing AuNP functionalization as a strategy in tuning and reversing this effect.
Collapse
Affiliation(s)
- Barbara Pem
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Qiqian Liu
- The Institute of Molecules and Materials of Le Mans, University of Le Mans, Avenue Olivier Messiaen, Le Mans cedex 9, 72085, France
| | - Lea Pašalić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Mathieu Edely
- The Institute of Molecules and Materials of Le Mans, University of Le Mans, Avenue Olivier Messiaen, Le Mans cedex 9, 72085, France
| | - Marc Lamy de la Chapelle
- The Institute of Molecules and Materials of Le Mans, University of Le Mans, Avenue Olivier Messiaen, Le Mans cedex 9, 72085, France
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia.
| |
Collapse
|
11
|
Shen H, Ouyang Y, Zhang L, Li J, Wang S. Blood Cell Membrane-Coated Nanomaterials as a Versatile Biomimetic Nanoplatform for Antitumor Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1757. [PMID: 39513837 PMCID: PMC11548044 DOI: 10.3390/nano14211757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The application of nanomaterials in tumor therapy is increasingly widespread, offering more possibilities for enhanced tumor therapy. However, the unclear biological distribution and metabolism of nanomaterials may lead to immune rejection or inflammatory reactions, posing numerous challenges to their clinical translation. The rich diversity and multifaceted functions of blood cells offer promising biological avenues for enhancing the application of nanoparticles in cancer therapy. Blood cell membranes, being made of naturally found components in the body, exhibit significant biocompatibility, which can reduce the body's immune rejection response, extend the drug's residence time in the bloodstream, and enhance its bioavailability. Integrating blood cell membranes with nanomaterials enhances tumor therapy by improving targeted delivery, prolonging circulation time, and evading immune responses. This review summarizes recent advancements in the application of blood cell membrane-coated nanomaterials for antitumor therapy, with a particular focus on their use in photodynamic and photothermal treatments. Additionally, it explores their potential for synergistic effects when combined with other therapeutic modalities.
Collapse
Affiliation(s)
| | | | | | - Jing Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.S.); (L.Z.)
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.S.); (L.Z.)
| |
Collapse
|
12
|
Wu C, Zhang J, Yang S, Peng C, Lv M, Liang J, Li X, Xie L, Wei Y, Chen H, He J, Hu T, Xie Z, Yu M. Preparation and Pharmacokinetics of Brain-Targeted Nanoliposome Loaded with Rutin. Int J Mol Sci 2024; 25:11404. [PMID: 39518957 PMCID: PMC11546852 DOI: 10.3390/ijms252111404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Rutin is a flavonoid compound with potential for treating Alzheimer's disease, preventing brain damage, mitigating cerebral ischemia-reperfusion injury, and exhibiting anti-glioblastoma activity. However, its efficacy is limited by its low solubility, poor bioavailability, and limited permeability across the blood-brain barrier (BBB). To enhance the bioavailability and brain-targeting ability of Rutin, transferrin-modified Rutin liposome (Tf-Rutin-Lip) was developed using liposomes as a delivery system. Rutin liposomes were prepared using the thin-film dispersion method, and the preparation conditions were optimized using the response surface methodology. Then, transferrin (Tf) was incorporated into the liposomes through covalent modification, yielding Tf-Rutin liposomes. The toxicity of these liposomes on bEnd.3 cells, as well as their impact on the tight junctions of these cells, was rigorously evaluated. Additionally, in vitro and in vivo experiments were conducted to validate the brain-targeting efficacy of the Tf-Rutin liposomes. A susceptible detection method was developed to characterize the pharmacokinetics of Tf-Rutin-Lip further. The optimized conditions for the preparation of Tf-Rutin-Lip were determined as follows: a lipid-to-cholesterol ratio of 4.63:1, a drug-to-lipid ratio of 1:45.84, a preparation temperature of 42.7 °C, a hydration volume of 20 mL, a sonication time of 10 min, a surfactant concentration of 80 mg/mL, a DSPE-MPEG-2000 concentration of 5%, and a DSPE-PEG2000-COOH to DSPE-MPEG-2000 molar ratio of 10%. The liposomes did not affect the cell activity of bEnd.3 cells at 24 h and did not disrupt the tight junction of the blood-brain barrier. Tf-modified liposomes were taken up by bEnd.3 cells, which, in turn, passed through the BBB, thus improving liposomal brain targeting. Furthermore, the results of pharmacokinetic experiments showed that the Cmax, AUC0-∞, AUC0-t, MRT0-∞, and t1/2 of Tf-Rutin-Lip increased 1.99-fold, 2.77-fold, 2.58-fold, 1.26-fold, and 1.19-fold compared to those of free Rutin solution, respectively. These findings suggest that Tf-Rutin-Lip is brain-targeted and may enhance the efficacy of Rutin in the treatment of brain disorders.
Collapse
Affiliation(s)
- Changxu Wu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
| | - Jinwu Zhang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
| | - Shisen Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
| | - Chunzi Peng
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
| | - Maojie Lv
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
| | - Jing Liang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
| | - Xiaoning Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
| | - Liji Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China (Z.X.)
| | - Yingyi Wei
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
| | - Hailan Chen
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
| | - Jiakang He
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
| | - Tingjun Hu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
| | - Zhixun Xie
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China (Z.X.)
| | - Meiling Yu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (C.W.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China (Z.X.)
| |
Collapse
|
13
|
Martín‐Morales C, Caspani S, Desco M, Tavares de Sousa C, Gómez‐Gaviro MV. Controlled Drug Release Systems for Cerebrovascular Diseases. ADVANCED THERAPEUTICS 2024. [DOI: 10.1002/adtp.202400239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Indexed: 01/06/2025]
Abstract
AbstractThis review offers a comprehensive exploration of optimized drug delivery systems tailored for controlled release and their crucial role in addressing cerebrovascular diseases. Through an in‐depth analysis, various controlled release methods, including nanoparticles, liposomes, hydrogels, and other emerging technologies are examined. Highlighting the importance of precise drug targeting, it is delved into the underlying mechanisms of these delivery systems and their potential to improve therapeutic outcomes while minimizing adverse effects. Additionally, the specific applications of these optimized drug delivery systems in treating cerebrovascular disorders such as ischemic stroke, cerebral aneurysms, and intracranial hemorrhage are discussed. By shedding light on the advancements in drug delivery techniques and their implications in cerebrovascular medicine, this review offers valuable insights into the future of therapeutic interventions in neurology.
Collapse
Affiliation(s)
- Celia Martín‐Morales
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Doctor Esquerdo 46 Madrid 28007 Spain
| | - Sofia Caspani
- IFIMUP – Institute of Physics for Advanced Materials Departamento de Física e Astronomia, Nanotechnology and Photonics of University of Porto Faculdade de Ciências Universidade do Porto, Rua do Campo Alegre s/n Porto 4169‐007 Portugal
| | - Manuel Desco
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Doctor Esquerdo 46 Madrid 28007 Spain
- Departamento de Bioingeniería Universidad Carlos III de Madrid Leganés 28911 Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) Madrid 28029 Spain
- Centro de Investigaciones Cardiovasculares (CNIC) Melchor Fernández Almagro Madrid 28029 Spain
| | - Célia Tavares de Sousa
- Departamento de Física Aplicada and IAdChem Facultad de Ciencias Universidad Autonoma de Madrid (UAM) Campus de Cantoblanco, C/ Francisco Tomas y Valiente, 7 Madrid 28049 Spain
| | - María Victoria Gómez‐Gaviro
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Doctor Esquerdo 46 Madrid 28007 Spain
- Departamento de Bioingeniería Universidad Carlos III de Madrid Leganés 28911 Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM) Madrid 28029 Spain
| |
Collapse
|
14
|
Rezaei B, Harun A, Wu X, Iyer PR, Mostufa S, Ciannella S, Karampelas IH, Chalmers J, Srivastava I, Gómez-Pastora J, Wu K. Effect of Polymer and Cell Membrane Coatings on Theranostic Applications of Nanoparticles: A Review. Adv Healthc Mater 2024; 13:e2401213. [PMID: 38856313 DOI: 10.1002/adhm.202401213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The recent decade has witnessed a remarkable surge in the field of nanoparticles, from their synthesis, characterization, and functionalization to diverse applications. At the nanoscale, these particles exhibit distinct physicochemical properties compared to their bulk counterparts, enabling a multitude of applications spanning energy, catalysis, environmental remediation, biomedicine, and beyond. This review focuses on specific nanoparticle categories, including magnetic, gold, silver, and quantum dots (QDs), as well as hybrid variants, specifically tailored for biomedical applications. A comprehensive review and comparison of prevalent chemical, physical, and biological synthesis methods are presented. To enhance biocompatibility and colloidal stability, and facilitate surface modification and cargo/agent loading, nanoparticle surfaces are coated with different synthetic polymers and very recently, cell membrane coatings. The utilization of polymer- or cell membrane-coated nanoparticles opens a wide variety of biomedical applications such as magnetic resonance imaging (MRI), hyperthermia, photothermia, sample enrichment, bioassays, drug delivery, etc. With this review, the goal is to provide a comprehensive toolbox of insights into polymer or cell membrane-coated nanoparticles and their biomedical applications, while also addressing the challenges involved in translating such nanoparticles from laboratory benchtops to in vitro and in vivo applications. Furthermore, perspectives on future trends and developments in this rapidly evolving domain are provided.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Asma Harun
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Xian Wu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Poornima Ramesh Iyer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | | | - Jeffrey Chalmers
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| |
Collapse
|
15
|
Shoji T, Iida M, Matsumoto M, Yuyama KI, Tsuboi Y. Measurements of Spontaneous and External Stimuli Molecular Release Processes from a Single Optically Trapped Poly(lactic- co-glycolic) Acid Microparticle and a Liposome Containing Gold Nanospheres. Anal Chem 2024; 96:12957-12965. [PMID: 39078103 DOI: 10.1021/acs.analchem.3c05950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
We investigated the single particle kinetics of the molecular release processes from two types of microcapsules used as drug delivery systems (DDS): biodegradable poly(lactic-co-glycolic) acid (PLGA) and a light-triggered-degradable liposome encapsulating gold nanospheres (liposome-GNP). To optimize the design of DDS capsules, it is highly desirable to develop a method for real-time monitoring of the release process. Using a combination of optical tweezers and confocal fluorescence microspectroscopy we successfully analyzed a single optically trapped PLGA particle and liposome-GNPs in solution. From temporal decay profiles of the fluorescence intensity, we determined the time constant τ of the release processes. We demonstrated that the release rate of spontaneously degradable microcapsules (PLGA) decreased with increasing size, while conversely, the release rate of external stimuli-degradable microcapsules (liposome-GNPs) increased in proportion to their size. This result is explained by the differences in the disruption mechanisms of the capsules, with PLGA undergoing hydrolysis and the GNPs in the liposome-GNP undergoing a photoacoustic effect under nanosecond pulsed laser irradiation. The present approach offers a way forward to an alternative microanalysis system for single drug delivery nanocarriers.
Collapse
Affiliation(s)
- Tatsuya Shoji
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Field of Chemistry, Faculty of Science, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan
| | - Miyako Iida
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Mitsuhiro Matsumoto
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Ken-Ichi Yuyama
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yasuyuki Tsuboi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
16
|
Iversen A, Utterström J, Selegård R, Aili D. Enzymatically Triggered Peptide-Lipid Conjugation of Designed Membrane Active Peptides for Controlled Liposomal Release. ACS OMEGA 2024; 9:19613-19619. [PMID: 38708287 PMCID: PMC11064179 DOI: 10.1021/acsomega.4c01387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
Possibilities for controlling the release of pharmaceuticals from liposomal drug delivery systems can enhance their efficacy and reduce their side effects. Membrane-active peptides (MAPs) can be tailored to promote liposomal release when conjugated to lipid head groups using thiol-maleimide chemistry. However, the rapid oxidation of thiols hampers the optimization of such conjugation-dependent release strategies. Here, we demonstrate a de novo designed MAP modified with an enzyme-labile Cys-protection group (phenylacetamidomethyl (Phacm)) that prevents oxidation and facilitates in situ peptide lipidation. Before deprotection, the peptide lacks a defined secondary structure and does not interact with maleimide-functionalized vesicles. After deprotection of Cys using penicillin G acylase (PGA), the peptide adopts an α-helical conformation and triggers rapid release of vesicle content. Both the peptide and PGA concentrations significantly influence the conjugation process and, consequently, the release kinetics. At a PGA concentration of 5 μM the conjugation and release kinetics closely mirror those of fully reduced, unprotected peptides. We anticipate that these findings will enable further refinement of MAP conjugation and release processes, facilitating the development of sophisticated bioresponsive MAP-based liposomal drug delivery systems.
Collapse
Affiliation(s)
- Alexandra Iversen
- Laboratory of Molecular Materials,
Division of Biophysics and Bioengineering, Linköping University, Linköping 581 83, Sweden
| | - Johanna Utterström
- Laboratory of Molecular Materials,
Division of Biophysics and Bioengineering, Linköping University, Linköping 581 83, Sweden
| | - Robert Selegård
- Laboratory of Molecular Materials,
Division of Biophysics and Bioengineering, Linköping University, Linköping 581 83, Sweden
| | - Daniel Aili
- Laboratory of Molecular Materials,
Division of Biophysics and Bioengineering, Linköping University, Linköping 581 83, Sweden
| |
Collapse
|
17
|
Pašalić L, Liu Q, Vukosav P, Mišić Radić T, Azziz A, Majdinasab M, Edely M, de la Chapelle ML, Bakarić D. The presence of uncoated gold nanoparticle aggregates may alter the phase of phosphatidylcholine lipid as evidenced by vibrational spectroscopies. J Liposome Res 2024; 34:113-123. [PMID: 37493091 DOI: 10.1080/08982104.2023.2239905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
Spherical structures built from uni- and multilamellar lipid bilayers (LUV and MLV) are nowadays considered not just as nanocarriers of various kinds of therapeutics, but also as the vehicles that, when coupled with gold (Au) nanoparticles (NPs), can also serve as a tool for imaging and discriminating healthy and diseased tissues. Since the presence of Au NPs or their aggregates may affect the properties of the drug delivery vehicle, we investigated how the shape and position of Au NP aggregates adsorbed on the surface of MLV affect the arrangement and conformation of lipid molecules. By preparing MLVs constituted from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in the presence of uncoated Au NP aggregates found i) both within liposome core and on the surface of the outer lipid bilayer, or ii) adsorbed on the outer lipid bilayer surface only, we demonstrated the maintenance of lipid bilayer integrity by microscopic techniques (cryo-TEM, and AFM). The employment of SERS and FTIR-ATR techniques enabled us not only to elucidate the lipid interaction pattern and their orientation in regards to Au NP aggregates but also unequivocally confirmed the impact of Au NP aggregates on the persistence/breaking of van der Waals interactions between hydrocarbon chains of DPPC.
Collapse
Affiliation(s)
- Lea Pašalić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Qiqian Liu
- The Institute of Molecules and Materials of Le Mans, University of Le Mans, Le Mans, France
| | - Petra Vukosav
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tea Mišić Radić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Aicha Azziz
- The Institute of Molecules and Materials of Le Mans, University of Le Mans, Le Mans, France
| | - Marjan Majdinasab
- The Institute of Molecules and Materials of Le Mans, University of Le Mans, Le Mans, France
| | - Mathieu Edely
- The Institute of Molecules and Materials of Le Mans, University of Le Mans, Le Mans, France
| | | | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
18
|
Gómez-Lázaro L, Martín-Sabroso C, Aparicio-Blanco J, Torres-Suárez AI. Assessment of In Vitro Release Testing Methods for Colloidal Drug Carriers: The Lack of Standardized Protocols. Pharmaceutics 2024; 16:103. [PMID: 38258113 PMCID: PMC10819705 DOI: 10.3390/pharmaceutics16010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Although colloidal carriers have been in the pipeline for nearly four decades, standardized methods for testing their drug-release properties remain to be established in pharmacopeias. The in vitro assessment of drug release from these colloidal carriers is one of the most important parameters in the development and quality control of drug-loaded nano- and microcarriers. This lack of standardized protocols occurs due to the difficulties encountered in separating the released drug from the encapsulated one. This review aims to compare the most frequent types of release testing methods (i.e., membrane diffusion techniques, sample and separate methods and in situ detection techniques) in terms of the advantages and disadvantages of each one and of the key parameters that influence drug release in each case.
Collapse
Affiliation(s)
- Laura Gómez-Lázaro
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| |
Collapse
|
19
|
Alzahrani AR, Ibrahim IAA, Shahzad N, Shahid I, Alanazi IM, Falemban AH, Azlina MFN. An application of carbohydrate polymers-based surface-modified gold nanoparticles for improved target delivery to liver cancer therapy - A systemic review. Int J Biol Macromol 2023; 253:126889. [PMID: 37714232 DOI: 10.1016/j.ijbiomac.2023.126889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Gold nanoparticles have been broadly investigated as cancer diagnostic and therapeutic agents. Gold nanoparticles are a favorable drug delivery vehicle with their unique subcellular size and good biocompatibility. Chitosan, agarose, fucoidan, porphyran, carrageenan, ulvan and alginate are all examples of biologically active macromolecules. Since they are biocompatible, biodegradable, and irritant-free, they find extensive application in biomedical and macromolecules. The versatility of these compounds is enhanced because they are amenable to modification by functional groups like sulfation, acetylation, and carboxylation. In an eco-friendly preparation process, the biocompatibility and targeting of GNPs can be improved by functionalizing them with polysaccharides. This article provides an update on using carbohydrate-based GNPs in liver cancer treatment, imaging, and drug administration. Selective surface modification of several carbohydrate types and further biological uses of GNPs are focused on.
Collapse
Affiliation(s)
- Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim M Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohd Fahami Nur Azlina
- Department of Pharmacology, Faculty of Medicine, University Kebangsaan Malaysia, Malaysia
| |
Collapse
|
20
|
Fernandes DA. Liposomes for Cancer Theranostics. Pharmaceutics 2023; 15:2448. [PMID: 37896208 PMCID: PMC10610083 DOI: 10.3390/pharmaceutics15102448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is one of the most well-studied diseases and there have been significant advancements over the last few decades in understanding its molecular and cellular mechanisms. Although the current treatments (e.g., chemotherapy, radiotherapy, gene therapy and immunotherapy) have provided complete cancer remission for many patients, cancer still remains one of the most common causes of death in the world. The main reasons for the poor response rates for different cancers include the lack of drug specificity, drug resistance and toxic side effects (i.e., in healthy tissues). For addressing the limitations of conventional cancer treatments, nanotechnology has shown to be an important field for constructing different nanoparticles for destroying cancer cells. Due to their size (i.e., less than 1 μm), nanoparticles can deliver significant amounts of cancer drugs to tumors and are able to carry moieties (e.g., folate, peptides) for targeting specific types of cancer cells (i.e., through receptor-mediated endocytosis). Liposomes, composed of phospholipids and an interior aqueous core, can be used as specialized delivery vehicles as they can load different types of cancer therapy agents (e.g., drugs, photosensitizers, genetic material). In addition, the ability to load imaging agents (e.g., fluorophores, radioisotopes, MRI contrast media) enable these nanoparticles to be used for monitoring the progress of treatment. This review examines a wide variety of different liposomes for cancer theranostics, with the different available treatments (e.g., photothermal, photodynamic) and imaging modalities discussed for different cancers.
Collapse
|
21
|
Li J, Cao Y, Zhang X, An M, Liu Y. The Application of Nano-drug Delivery System With Sequential Drug Release Strategies in Cancer Therapy. Am J Clin Oncol 2023; 46:459-473. [PMID: 37533151 DOI: 10.1097/coc.0000000000001030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Currently, multidrug combinations are often used clinically to improve the efficacy of oncology chemotherapy, but multidrug combinations often lead to multidrug resistance and decreased performance, resulting in more severe side effects than monotherapy. Therefore, sequential drug release strategies in time and space as well as nano-carriers that respond to the tumor microenvironment have been developed. First, the advantage of the sequential release strategy is that they can load multiple drugs simultaneously to meet their spatiotemporal requirements and stability, thus exerting synergistic effects of two or more drugs. Second, in some cases, sequential drug delivery of different molecular targets can improve the sensitivity of cancer cells to drugs. Control the metabolism of cancer cells, and remodel tumor vasculature. Finally, some drug combinations with built-in release control are used for sequential administration. This paper focuses on the use of nanotechnology and built-in control device to construct drug delivery carriers with different stimulation responses, thus achieving the sequential release of drugs. Therefore, the nano-sequential delivery carrier provides a new idea and platform for the therapeutic effect of various drugs and the synergistic effect among drugs.
Collapse
Affiliation(s)
- Juan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | | | | | | | | |
Collapse
|
22
|
Avila-Quezada GD, Rai M. Novel nanotechnological approaches for managing Phytophthora diseases of plants. TRENDS IN PLANT SCIENCE 2023; 28:1070-1080. [PMID: 37085411 DOI: 10.1016/j.tplants.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Members of the Phytophthora genus are soil-dwelling pathogens responsible for diseases of several important plants. Among these, Phytophthora infestans causes late blight of potatoes, which was responsible for the Irish potato famine during the mid-19th century. Various strategies have been applied to control Phytophthora, including integrated management programs (IMPs) and quarantine, but without successful full management of the disease. Thus, there is a need to search for alternative tools. Here, we discuss the emerging role of nanomaterials in the detection and treatment of Phytophthora species, including slow delivery of agrochemicals (microbicides and pesticides). We propose integrating these tools into an IMP, which could lead to a reduction in pesticide use and provide more effective and sustainable control of Phytophthora pathogens.
Collapse
Affiliation(s)
- Graciela Dolores Avila-Quezada
- Universidad Autonoma de Chihuahua, Facultad de Ciencias Agrotecnologicas, Escorza 900, Chihuahua, Chihuahua 31000, Mexico.
| | - Mahendra Rai
- Sant Gadge Baba Amravati University, Department of Biotechnology, Nanobiotechnology Laboratory, Amravati, Maharashtra 444602, India; Nicolaus Copernicus University, Department of Microbiology, 87-100 Toruń, Poland.
| |
Collapse
|
23
|
Maneri AH, Varode SS, Maibam A, Ranjan P, Krishnamurty S, Joshi K. Quantum dot (Au n/Ag n, n = 3-8) capped single lipids: interactions and physicochemical properties. Phys Chem Chem Phys 2023; 25:22294-22303. [PMID: 37578075 DOI: 10.1039/d3cp01131c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Realizing the potential of nano-hybrid biomaterials in various applications (nanoprobes to drug delivery), special attention has been devoted towards their synthesis and development. Nonetheless, several questions pertaining to the interface chemistry between the constituent entities (biomolecules and organic/inorganic part) of these hybrids, still remain unresolved. Keeping these unsolved issues in mind, the present theoretical investigation focuses on determining the electronic/physicochemical properties and interactions within gold and silver quantum dot-capped single lipid molecules. Quantum dots of varying sizes and shapes have been chosen and then coupled with lipid molecules (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol, sodium salt (DMPG)), at the choline/glycerol, carboxylate and phosphate site. It has been identified that Au Qds interact strongly as compared to Ag clusters. In addition to the type, the shape and size of the Qd also influences their attachment with lipids. Among various sites, the phosphate site provides a considerably stronger platform for the coupling of Qds. On the other hand, attachment at the choline site leads to significantly lower interaction energies. The trend noted in interaction energies coincides with the structure-electronic property analysis (interatomic bond distances, charge transfer, PO2- stretching frequencies), which further helps in deducing the nature of interactions. The molecular dynamics simulations performed on selected Qd-lipid complexes established that the Qd interacting with lipids at the phosphate site remains fairly stable at room temperature without undergoing fragmentation into individual components. On the other hand, at the choline site, the Qd-to-lipid coupling is unstable and therefore they experience disintegration at 300 K temperature. Additionally, a unique glycerol-to-phosphate site crossover is evidenced, which reaffirms that the phosphate site is selectively preferred by Qds for binding with lipid molecules.
Collapse
Affiliation(s)
- Asma H Maneri
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Shruti Suhas Varode
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India.
- D. Y. Patil International University, Pune, India
| | - Ashakiran Maibam
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | | | - Sailaja Krishnamurty
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Krati Joshi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India.
| |
Collapse
|
24
|
Matić A, Sher EK, Farhat EK, Sher F. Nanostructured Materials for Drug Delivery and Tissue Engineering Applications. Mol Biotechnol 2023:10.1007/s12033-023-00784-1. [PMID: 37347435 DOI: 10.1007/s12033-023-00784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023]
Abstract
Nanotechnology and nanostructured materials for drug delivery and tissue engineering applications are relatively new field that is constantly advancing and expanding. The materials used are at the nanoscale level. Recently, great discoveries and applications have been made (Agents for use in chemotherapy, biological agents and immunotherapy agents) in the treatment of diseases in various areas. Tissue engineering is based on the regeneration and repair of damaged organs and tissues by developing biological substitutes that restore, maintain or improve the function of tissues and organs. Cells isolated from patients are used to seed 3D nanoparticles that can be synthetic or natural biomaterials. For the development of new tissue in tissue engineering, it is necessary to meet the conditions for connecting cells. This paper will present the ways of connecting cells and creating new tissues. Some recent discoveries and advances in the field of nanomedicine and the application of nanotechnology in drug delivery will be presented. Furthermore, the improvement of the effectiveness of new and old drugs based on the application of nanotechnology will be shown.
Collapse
Affiliation(s)
- Antonela Matić
- Faculty of Pharmacy, University of Modern Sciences - CKM, Mostar, 88000, Bosnia and Herzegovina
| | - Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| | - Esma Karahmet Farhat
- Department of Food and Nutrition Research, Faculty of Food and Technology, Josip Juraj Strossmayer University of Osijek, Osijek, 31000, Croatia
- International Society of Engineering Science and Technology, Nottingham, UK
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
25
|
Sapienza Passos J, Dartora VFMC, Cassone Salata G, Draszesski Malagó I, Lopes LB. Contributions of nanotechnology to the intraductal drug delivery for local treatment and prevention of breast cancer. Int J Pharm 2023; 635:122681. [PMID: 36738808 DOI: 10.1016/j.ijpharm.2023.122681] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/27/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Breast cancer is a major public health problem, affecting millions of people. It is a very heterogeneous disease, with localized and invasive forms, and treatment generally consists of a combination of surgery and radiotherapy followed by administration of estrogen receptor modulators or aromatase inhibitors. Given its heterogeneity, management strategies that take into consideration the type of disease and biological markers and can provide more personalized and local treatment are required. More recently, the intraductal administration (i.e., into the breast ducts) of drugs has attracted significant attention due to its ability of providing drug distribution through the ductal tree in a minimally invasive manner. Although promising, intraductal administration is not trivial, and difficulties in duct identification and cannulation are important challenges to the further development of this route. New drug delivery strategies such as nanostructured systems can help to achieve the full benefits of the route due to the possibility of prolonging tissue retention, improving targeting and selectivity, increasing cytotoxicity and reducing the frequency of administration. This review aims at discussing the potential benefits and challenges of intraductal administration, focusing on the design and use of nanocarriers as innovative and feasible strategies for local breast cancer therapy and prevention.
Collapse
Affiliation(s)
- Julia Sapienza Passos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Vanessa F M C Dartora
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Brazil; College of Engineering, University of California-Davis, USA
| | - Giovanna Cassone Salata
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | - Luciana B Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Brazil.
| |
Collapse
|
26
|
Pan WT, Liu PM, Ma D, Yang JJ. Advances in photobiomodulation for cognitive improvement by near-infrared derived multiple strategies. J Transl Med 2023; 21:135. [PMID: 36814278 PMCID: PMC9945713 DOI: 10.1186/s12967-023-03988-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Cognitive function is an important ability of the brain, but cognitive dysfunction can easily develop once the brain is injured in various neuropathological conditions or diseases. Photobiomodulation therapy is a type of noninvasive physical therapy that is gradually emerging in the field of neuroscience. Transcranial photobiomodulation has been commonly used to regulate neural activity in the superficial cortex. To stimulate deeper brain activity, advanced photobiomodulation techniques in conjunction with photosensitive nanoparticles have been developed. This review addresses the mechanisms of photobiomodulation on neurons and neural networks and discusses the advantages, disadvantages and potential applications of photobiomodulation alone or in combination with photosensitive nanoparticles. Photobiomodulation and its associated strategies may provide new breakthrough treatments for cognitive improvement.
Collapse
Affiliation(s)
- Wei-tong Pan
- grid.412633.10000 0004 1799 0733Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, 450052 China ,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450000 People’s Republic of China
| | - Pan-miao Liu
- grid.412633.10000 0004 1799 0733Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, 450052 China ,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450000 People’s Republic of China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK. .,National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| | - Jian-jun Yang
- grid.412633.10000 0004 1799 0733Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China ,grid.207374.50000 0001 2189 3846Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, 450052 China ,Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, 450000 People’s Republic of China
| |
Collapse
|
27
|
Abbasi H, Kouchak M, Mirveis Z, Hajipour F, Khodarahmi M, Rahbar N, Handali S. What We Need to Know about Liposomes as Drug Nanocarriers: An Updated Review. Adv Pharm Bull 2023; 13:7-23. [PMID: 36721822 PMCID: PMC9871273 DOI: 10.34172/apb.2023.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/13/2022] [Accepted: 03/31/2022] [Indexed: 02/03/2023] Open
Abstract
Liposomes have been attracted considerable attention as phospholipid spherical vesicles, over the past 40 years. These lipid vesicles are valued in biomedical application due to their ability to carry both hydrophobic and hydrophilic agents, high biocompatibility and biodegradability. Various methods have been used for the synthesis of liposomes, so far and numerous modifications have been performed to introduce liposomes with different characteristics like surface charge, size, number of their layers, and length of circulation in biological fluids. This article provides an overview of the significant advances in synthesis of liposomes via active or passive drug loading methods, as well as describes some strategies developed to fabricate their targeted formulations to overcome limitations of the "first-generation" liposomes.
Collapse
Affiliation(s)
- Hanieh Abbasi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Kouchak
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zohreh Mirveis
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Hajipour
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Khodarahmi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nadereh Rahbar
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Corresponding Authors: Nadereh Rahbar and Somayeh Handali, and
| | - Somayeh Handali
- Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran.,Corresponding Authors: Nadereh Rahbar and Somayeh Handali, and
| |
Collapse
|
28
|
Khot KB, Gopan G, Bandiwadekar A, Jose J. Current advancements related to phytobioactive compounds based liposomal delivery for neurodegenerative diseases. Ageing Res Rev 2023; 83:101806. [PMID: 36427765 DOI: 10.1016/j.arr.2022.101806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Neurodegenerative diseases are the most widely affected disease condition in an aging population. The treatment available reduces the elevated manifestations but is ineffective due to the drug's poor bioavailability, plasma stability, and permeability across the blood-brain barrier (BBB). Until now, no therapeutic compound has been able to stop the progression of neurodegenerative disease. Even the available therapeutic moiety manages it with possible adverse effects up to the later stage. Hence, phytobioactive compounds of plant origin offer effective treatment strategies against neurodegenerative diseases. The only difficulty of these phytobioactive compounds is permeability across the BBB. Engineered nanocarriers such as liposomes provide high lipid permeability across BBB. Liposomes have unique physicochemical properties that are widely investigated for their application in diagnosing and treating neurodegenerative diseases. The surface modification on liposomes by peptides, antibodies, and RNA aptamers offers receptor targeting. These brain-targeted approaches by liposomes improve the efficacy of phytoconstituents. Additional surface modification methods are utilized on liposomes, which increases the brain-targeted delivery of phytobioactive compounds. The marketing strategy of the liposomal delivery system is in its peak mode, where it has the potential to modify the existing therapy. This review will summarize the brain target liposomal delivery of phytobioactive compounds as a novel disease-modifying agent for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Kartik Bhairu Khot
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Gopika Gopan
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Akshay Bandiwadekar
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India
| | - Jobin Jose
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| |
Collapse
|
29
|
Sadeghi M, Asadirad A, Koushki K, Keshavarz Shahbaz S, Dehnavi S. Recent advances in improving intranasal allergen-specific immunotherapy; focus on delivery systems and adjuvants. Int Immunopharmacol 2022; 113:109327. [PMID: 36257257 DOI: 10.1016/j.intimp.2022.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/24/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
30
|
Saleem K, Siddiqui B, .ur.Rehman A, Taqi MM, Ahmed N. Exploiting Recent Trends in the Treatment of Androgenic Alopecia through Topical Nanocarriers of Minoxidil. AAPS PharmSciTech 2022; 23:292. [DOI: 10.1208/s12249-022-02444-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
|
31
|
Ye X, Chen X, He R, Meng W, Chen W, Wang F, Meng X. Enhanced anti-breast cancer efficacy of co-delivery liposomes of docetaxel and curcumin. Front Pharmacol 2022; 13:969611. [PMID: 36324685 PMCID: PMC9618653 DOI: 10.3389/fphar.2022.969611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/27/2022] [Indexed: 08/28/2023] Open
Abstract
The successful treatment of breast cancer is hampered by toxicity to normal cells, impaired drug accumulation at the tumor site, and multidrug resistance. We designed a novel multifunctional liposome, CUR-DTX-L, to co-deliver curcumin (CUR) and the chemotherapeutic drug docetaxel (DTX) for the treatment of breast cancer in order to address multidrug resistance (MDR) and the low efficacy of chemotherapy. The mean particle size, polydispersity index, zeta potential, and encapsulation efficiency of CUR-DTX-L were 208.53 ± 6.82 nm, 0.055 ± 0.001, -23.1 ± 2.1 mV, and 98.32 ± 2.37%, respectively. An in vitro release study and CCK-8 assays showed that CUR-DTX-L has better sustained release effects and antitumor efficacy than free drugs, the antitumor efficacy was verified by MCF-7 tumor-bearing mice, the CUR-DTX-L showed better antitumor efficacy than other groups, and the in vivo pharmacokinetic study indicated that the plasma concentration-time curve, mean residence time, and biological half-life time of CUR-DTX-L were significantly increased compared with free drugs, suggesting that it is a promising drug delivery system for the synergistic treatment of breast cancer.
Collapse
Affiliation(s)
- Xi Ye
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei, China
- Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
- Hefei Hospital Affiliated to Bengbu Medical College, Hefei, China
| | - Xin Chen
- Department of Pharmacy, Anhui Provincial Crops Hospital, Hefei, China
| | - Ruixi He
- Anhui University of Chinese Medicine, Hefei, China
- Institute of Drug Metabolism, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Wangyang Meng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weidong Chen
- Institute of Drug Metabolism, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Fengling Wang
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei, China
- Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
- Hefei Hospital Affiliated to Bengbu Medical College, Hefei, China
| | - Xiangyun Meng
- Department of Pharmacy, The Second People’s Hospital of Hefei, Hefei, China
- Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
- Hefei Hospital Affiliated to Bengbu Medical College, Hefei, China
| |
Collapse
|
32
|
Gamage RS, Smith BD. Spontaneous Transfer of Indocyanine Green from Liposomes to Albumin Is Inhibited by the Antioxidant α-Tocopherol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11950-11961. [PMID: 36126324 PMCID: PMC9897306 DOI: 10.1021/acs.langmuir.2c01715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Indocyanine Green (ICG) is a clinically approved organic dye with near-infrared absorption and fluorescence. Over the years, many efforts to improve the photophysical and pharmacokinetic properties of ICG have investigated numerous nanoparticle formulations, especially liposomes with membrane-embedded ICG. A series of systematic absorption and fluorescence experiments, including FRET experiments using ICG as a fluorescence energy acceptor, found that ICG transfers spontaneously from liposomes to albumin protein residing in the external solution with a half-life of ∼10 min at 37 °C. Moreover, transfer of ICG from liposome membranes to external albumin reduces light-activated leakage from thermosensitive liposomes with membrane-embedded ICG. A survey of lipophilic liposome additives discovered that the presence of clinically approved antioxidant, α-tocopherol, greatly increases ICG retention in the liposomes (presumably by forming favorable aromatic stacking interactions), inhibits ICG photobleaching and prevents albumin-induced reduction of light-triggered liposome leakage. This new insight will help researchers with the specific task of optimizing ICG-containing liposomes for fluorescence imaging or phototherapeutics. More broadly, the results suggest a broader design concept concerning light triggered liposome leakage, that is, proximity of the light absorbing dye to the bilayer membrane is a critical design feature that impacts the extent of liposome leakage.
Collapse
|
33
|
Hu Z, Han S, Nie N, Wang J, Hu J, Reheman A. Preparation and drug release behavior of amphiphilic polyamino acids nanomicelles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
34
|
Hariharan K, Patel P, Mehta T. Surface modifications of Gold Nanoparticles: Stabilization and Recent Applications in Cancer Therapy. Pharm Dev Technol 2022; 27:665-683. [PMID: 35850605 DOI: 10.1080/10837450.2022.2103825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Gold nanoparticles (GNP) are noble metal nanocarriers that have been recently researched upon for pharmaceutical applications, imaging, and diagnosis. These metallic nanocarriers are easy to synthesize using chemical reduction techniques as their surface can be easily modified. Also, the properties of GNP are significantly affected by its size and shape which mandates its stabilization using suitable techniques of surface modification. Over the past decade, research has focused on surface modification of GNP and its stabilization using polymers, polysaccharides, proteins, dendrimers, and phase-stabilizers like gel phase or ionic liquid phase. The use of GNP for pharmaceutical applications requires its surface modification using biocompatible and inert surface modifiers. The stabilizers used, interact with the surface of GNP to provide either electrostatic stabilization or steric stabilization. This review extensively discusses the surface modification techniques for GNP and the related molecular level interactions involved in the same. The influence of various factors like the concentration of stabilizers used their characteristics like chain length and thickness, pH of the surrounding media, etc., on the surface of GNP and resulting to stability have been discussed in detail. Further, this review highlights the recent applications of surface-modified GNP in the management of tumor microenvironment and cancer therapy.
Collapse
Affiliation(s)
- Kartik Hariharan
- Institute of Pharmacy, Nirma University, SG Highway, Gota, Ahmedabad-382481, Gujarat, India
| | - Parth Patel
- Institute of Pharmacy, Nirma University, SG Highway, Gota, Ahmedabad-382481, Gujarat, India
| | - Tejal Mehta
- Institute of Pharmacy, Nirma University, SG Highway, Gota, Ahmedabad-382481, Gujarat, India
| |
Collapse
|
35
|
Liposomes containing nanoparticles: preparation and applications. Colloids Surf B Biointerfaces 2022; 218:112737. [DOI: 10.1016/j.colsurfb.2022.112737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/11/2022]
|
36
|
Light-responsive biomaterials for ocular drug delivery. Drug Deliv Transl Res 2022:10.1007/s13346-022-01196-5. [PMID: 35751001 DOI: 10.1007/s13346-022-01196-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 11/03/2022]
Abstract
Light-responsive biomaterials can be used for the delivery of therapeutic drugs and nucleic acids, where the tunable/precise delivery of payload highlights the potential of such biomaterials for treating a variety of conditions. The translucency of eyes and advances of laser technology in ophthalmology make light-responsive delivery of drugs feasible. Importantly, light can be applied in a non-invasive fashion; therefore, light-triggered drug delivery systems have great potential for clinical impact. This review will examine various types of light-responsive polymers and the chemistry that underpins their application as ophthalmic drug delivery systems.
Collapse
|
37
|
Wang X, Shan M, Zhang S, Chen X, Liu W, Chen J, Liu X. Stimuli-Responsive Antibacterial Materials: Molecular Structures, Design Principles, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104843. [PMID: 35224893 PMCID: PMC9069201 DOI: 10.1002/advs.202104843] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/30/2022] [Indexed: 05/03/2023]
Abstract
Infections are regarded as the most severe complication associated with human health, which are urgent to be solved. Stimuli-responsive materials are appealing therapeutic platforms for antibacterial treatments, which provide great potential for accurate theranostics. In this review, the advantages, the response mechanisms, and the key design principles of stimuli-responsive antibacterial materials are highlighted. The biomedical applications, the current challenges, and future directions of stimuli-responsive antibacterial materials are also discussed. First, the categories of stimuli-responsive antibacterial materials are comprehensively itemized based on different sources of stimuli, including external physical environmental stimuli (e.g., temperature, light, electricity, salt, etc.) and bacterial metabolites stimuli (e.g., acid, enzyme, redox, etc.). Second, structural characteristics, design principles, and biomedical applications of the responsive materials are discussed, and the underlying interrelationships are revealed. The molecular structures and design principles are closely related to the sources of stimuli. Finally, the challenging issues of stimuli-responsive materials are proposed. This review will provide scientific guidance to promote the clinical applications of stimuli-responsive antibacterial materials.
Collapse
Affiliation(s)
- Xianghong Wang
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Mengyao Shan
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Shike Zhang
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Xin Chen
- College of Food Science and EngineeringNational Engineering Research Center for Wheat & Corn Further ProcessingHenan University of TechnologyZhengzhou450001China
| | - Wentao Liu
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Jinzhou Chen
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Xuying Liu
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| |
Collapse
|
38
|
Mehrarya M, Gharehchelou B, Kabarkouhi Z, Ataei S, Esfahani FN, Wintrasiri MN, Mozafari MR. Functionalized Nanostructured Bioactive Carriers: Nanoliposomes, Quantum Dots, Tocosome and Theranostic Approach. Curr Drug Deliv 2022; 19:1001-1011. [PMID: 35331111 DOI: 10.2174/1567201819666220324092933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/20/2021] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lipidic nanocarriers have great potential for the encapsulation and delivery of numerous bioactive compounds. They have demonstrated significant benefits over traditional disease management and conventional therapy. The benefits associated with the particular properties of lipidic nanocarriers include site-specific drug deposition, improved pharmacokinetics and pharmacodynamics, enhanced internalization and intracellular transport, biodegradability, and decreased biodistribution. These properties result in the alleviation of the harmful consequences of conventional treatment protocols. Scope and approach: The administration of various bioactive molecules has been extensively investigated using nanostructured lipid carriers. In this article, theranostic applications of novel formulations of lipidic nanocarriers combined or complexed with quantum dots, certain polymers such as chitosan, and metallic nanoparticles (particularly gold) are reviewed. These formulations have demonstrated better controlled release features, improved drug loading capability, as well as a lower burst release rate. As a recent innovation in the field of drug delivery, tocosomes and their unique advantages are also explained in the final section of this entry. KEY FINDINGS AND CONCLUSIONS Theranostic medicine requires nanocarriers with improved target-specific accumulation and bio-distribution. Towards this end, lipid-based nanocarrier systems and tocosomes combined with unique properties of quantum dots, biocompatible polymers, and metallic nanoparticles seem to be ideal candidates to be considered for safe and efficient drug delivery.
Collapse
Affiliation(s)
- Mehrnoush Mehrarya
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | | | - Zeinab Kabarkouhi
- Laser and Plasma Research Institute, Shahid Beheshti University, and Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Sara Ataei
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fahime Nasr Esfahani
- Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Milint Neleptchenko Wintrasiri
- Supreme NanoBiotics Co. Ltd. and Supreme Pharmatech Co. Ltd., 399/90-95 Moo 13 Kingkaew Rd. Soi 25/1, T. Rachateva, A. Bangplee, Samutprakan 10540, Thailand
| | - M R Mozafari
- Supreme NanoBiotics Co. Ltd. and Supreme Pharmatech Co. Ltd., 399/90-95 Moo 13 Kingkaew Rd. Soi 25/1, T. Rachateva, A. Bangplee, Samutprakan 10540, Thailand
| |
Collapse
|
39
|
Ni Z, Hu J, Zhu H, Shang Y, Chen D, Chen Y, Liu H. In situ formation of a near-infrared controlled dual-antibacterial platform. NEW J CHEM 2022. [DOI: 10.1039/d1nj05028a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An in situ formed antibacterial platform was designed for near-infrared controlled pharmacotherapy and photothermal therapy of drug-resistant bacteria.
Collapse
Affiliation(s)
- Zhuoyao Ni
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiajie Hu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hui Zhu
- Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 201100, China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Daijie Chen
- Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 201100, China
| | | | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
40
|
Wang J, Gong J, Wei Z. Strategies for Liposome Drug Delivery Systems to Improve Tumor Treatment Efficacy. AAPS PharmSciTech 2021; 23:27. [PMID: 34907483 DOI: 10.1208/s12249-021-02179-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022] Open
Abstract
In the advancement of tumor therapy, in addition to the search for new antitumor compounds, the development of nano-drug delivery systems has opened up new pathways for tumor treatment by addressing some of the limitations of traditional drugs. Liposomes have received much attention for their high biocompatibility, low toxicity, high inclusivity, and improved drug bioavailability. They are one of the most studied nanocarriers, changing the size and surface characteristics of liposomes to better fit the tumor environment by taking advantage of the unique pathophysiology of tumors. They can also be designed as tumor targeting drug delivery vehicles for the precise delivery of active drugs into tumor cells. This paper reviews the current development of liposome formulations, summarizes the characterization methods of liposomes, and proposes strategies to improve the effectiveness of tumor treatment. Finally, it provides an outlook on the challenges and future directions of the field. Graphical abstract.
Collapse
|
41
|
Liang P, Mao L, Dong Y, Zhao Z, Sun Q, Mazhar M, Ma Y, Yang S, Ren W. Design and Application of Near-Infrared Nanomaterial-Liposome Hybrid Nanocarriers for Cancer Photothermal Therapy. Pharmaceutics 2021; 13:2070. [PMID: 34959351 PMCID: PMC8704010 DOI: 10.3390/pharmaceutics13122070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 01/04/2023] Open
Abstract
Liposomes are attractive carriers for targeted and controlled drug delivery receiving increasing attention in cancer photothermal therapy. However, the field of creating near-infrared nanomaterial-liposome hybrid nanocarriers (NIRN-Lips) is relatively little understood. The hybrid nanocarriers combine the dual superiority of nanomaterials and liposomes, with more stable particles, enhanced photoluminescence, higher tumor permeability, better tumor-targeted drug delivery, stimulus-responsive drug release, and thus exhibiting better anti-tumor efficacy. Herein, this review covers the liposomes supported various types of near-infrared nanomaterials, including gold-based nanomaterials, carbon-based nanomaterials, and semiconductor quantum dots. Specifically, the NIRN-Lips are described in terms of their feature, synthesis, and drug-release mechanism. The design considerations of NIRN-Lips are highlighted. Further, we briefly introduced the photothermal conversion mechanism of NIRNs and the cell death mechanism induced by photothermal therapy. Subsequently, we provided a brief conclusion of NIRNs-Lips applied in cancer photothermal therapy. Finally, we discussed a synopsis of associated challenges and future perspectives for the applications of NIRN-Lips in cancer photothermal therapy.
Collapse
Affiliation(s)
- Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Linshen Mao
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yanli Dong
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China;
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yining Ma
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
42
|
Barani M, Sangiovanni E, Angarano M, Rajizadeh MA, Mehrabani M, Piazza S, Gangadharappa HV, Pardakhty A, Mehrbani M, Dell’Agli M, Nematollahi MH. Phytosomes as Innovative Delivery Systems for Phytochemicals: A Comprehensive Review of Literature. Int J Nanomedicine 2021; 16:6983-7022. [PMID: 34703224 PMCID: PMC8527653 DOI: 10.2147/ijn.s318416] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, medicinal herbs and their phytochemicals have emerged as a great therapeutic option for many disorders. However, poor bioavailability and selectivity might limit their clinical application. Therefore, bioavailability is considered a notable challenge to improve bio-efficacy in transporting dietary phytochemicals. Different methods have been proposed for generating effective carrier systems to enhance the bioavailability of phytochemicals. Among them, nano-vesicles have been introduced as promising candidates for the delivery of insoluble phytochemicals. Due to the easy preparation of the bilayer vesicles and their adaptability, they have been widely used and approved by the scientific literature. The first part of the review is focused on introducing phytosome technology as well as its applications, with emphasis on principles of formulations and characterization. The second part provides a wide overview of biological activities of commercial and non-commercial phytosomes, divided by systems and related pathologies. These results confirm the greater effectiveness of phytosomes, both in terms of biological activity or reduced dosage, highlighting curcumin and silymarin as the most formulated compounds. Finally, we describe the promising clinical and experimental findings regarding the applications of phytosomes. The conclusion of this study encourages the researchers to transfer their knowledge from laboratories to market, for a further development of these products.
Collapse
Affiliation(s)
- Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, 76169-13555, Iran
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Marco Angarano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | | | - Mehrnaz Mehrabani
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | | | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrzad Mehrbani
- Department of Traditional Medicine, Faculty of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mario Dell’Agli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Mohammad Hadi Nematollahi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
43
|
Pan P, Svirskis D, Rees SWP, Barker D, Waterhouse GIN, Wu Z. Photosensitive drug delivery systems for cancer therapy: Mechanisms and applications. J Control Release 2021; 338:446-461. [PMID: 34481021 DOI: 10.1016/j.jconrel.2021.08.053] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/14/2023]
Abstract
Over the past three decades, various photosensitive nanoparticles have been developed as potential therapies in human health, ranging from photodynamic therapy technologies that have already reached clinical use, to drug delivery systems that are still in the preclinical stages. Many of these systems are designed to achieve a high spatial and temporal on-demand drug release via phototriggerable mechanisms. This review examines the current clinical and experimental applications in cancer treatment of photosensitive drug release systems, including nanocarriers such as liposomes, micelles, polymeric nanoparticles, and hydrogels. We will focus on the three main physicochemical mechanisms of imparting photosensitivity to a delivery system: i) photochemical reactions (oxidation, cleavage, and polymerization), ii) photoisomerization, iii) and photothermal reactions. Photosensitive nanoparticles have a multitude of different applications including controlled drug release, resulting from physical/conformational changes in the delivery systems in response to light of specific wavelengths. Most of the recent research in these delivery systems has primarily focused on improving the efficacy and safety of cancer treatments such as photodynamic and photothermal therapy. Combinations of multiple treatment modalities using photosensitive nanoparticulate delivery systems have also garnered great interest in combating multi-drug resistant cancers due to their synergistic effects. Finally, the challenges and future potential of photosensitive drug delivery systems in biomedical applications is outlined.
Collapse
Affiliation(s)
- Patrick Pan
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Shaun W P Rees
- School of Chemical Sciences, Faculty of Science, The University of Auckland, Auckland 1142, New Zealand
| | - David Barker
- School of Chemical Sciences, Faculty of Science, The University of Auckland, Auckland 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Geoffrey I N Waterhouse
- School of Chemical Sciences, Faculty of Science, The University of Auckland, Auckland 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
44
|
Yuan Z, Das S, Lazenby RA, White RJ, Park YC. Repetitive drug releases from light-activatable micron-sized liposomes. Colloids Surf A Physicochem Eng Asp 2021; 625:126778. [PMID: 34321715 PMCID: PMC8312686 DOI: 10.1016/j.colsurfa.2021.126778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this work, a novel light activatable micron-sized liposomal drug carrier that has a unique capability to release drug repetitively in proportion to the cycle number of short irradiation (5 s) of near-infrared (NIR) pulsed laser is reported. We synthesized methotrexate (MTX)-loaded liposomes based on a modified reverse-phase evaporation method. Gold nanorods (AuNR) were attached to the liposomal surfaces, enabling the liposomes to release drug under short NIR irradiation via the photothermal effect. The concentrations of methotrexate (MTX) released from the liposomes were 10.6, 29.8, 43.7 and 65.9 μg/mL after one, two, three or four NIR laser cycles (1.1 W at 1064 nm, 5 s per cycle), respectively. The current finding will provide possible solution to the previously reported inconsistency in drug release from light activatable liposomal drug carriers at each activation cycle. The repeatability of drug release described in this work is believed to be due to reversible nature of the liposomes. The liposomes release drug via lipid bilayer melting when irradiated by laser due to gold nanorods' plasmonic heat on the lipid bilayer surface and quickly regain their original structure once the laser source is removed. We provided evidence of the reversible liposomal structures by monitoring the change of number densities of liposomes using a microelectrode sensor with different laser irradiation durations and powers. We also assessed the micron-sized liposome with respect to long-term stability, drug encapsulation efficiency, and drug-releasing efficiency, demonstrating the possibility of utilizing these liposomes as long-term drug delivery vehicles for various drugs.
Collapse
Affiliation(s)
- Zheng Yuan
- Department of Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Saikat Das
- Department of Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Robert A Lazenby
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Ryan J White
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Yoonjee C Park
- Department of Chemical & Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States
| |
Collapse
|
45
|
Liao X, Yu X, Yu H, Huang J, Zhang B, Xiao J. Development of an anti-infective coating on the surface of intraosseous implants responsive to enzymes and bacteria. J Nanobiotechnology 2021; 19:241. [PMID: 34384446 PMCID: PMC8359346 DOI: 10.1186/s12951-021-00985-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/05/2021] [Indexed: 12/18/2022] Open
Abstract
Background Bacterial proliferation on the endosseous implants surface presents a new threat to the using of the bone implants. Unfortunately, there is no effective constructed antibacterial coating which is bacterial anti-adhesion substrate-independent or have long-term biofilm inhibition functions. Methods Drug release effect was tested in Chymotrypsin (CMS) solution and S. aureus. We used bacterial inhibition rate assays and protein leakage experiment to analyze the in vitro antibacterial effect of (Montmorillonite/Poly-l-lysine-Chlorhexidine)10 [(MMT/PLL-CHX)10] multilayer film. We used the CCK-8 assay to analyze the effect of (MMT/PLL-CHX)10 multilayer films on the growth and proliferation of rat osteoblasts. Rat orthopaedic implant-related infections model was constructed to test the antimicrobial activity effect of (MMT/PLL-CHX)10 multilayer films in vivo. Results In this study, the (MMT/PLL-CHX)10 multilayer films structure were progressively degraded and showed well concentration-dependent degradation characteristics following incubation with Staphylococcus aureus and CMS solution. Bacterial inhibition rate assays and protein leakage experiment showed high levels of bactericidal activity. While the CCK-8 analysis proved that the (MMT/PLL-CHX)10 multilayer films possess perfect biocompatibility. It is somewhat encouraging that in the in vivo antibacterial tests, the K-wires coated with (MMT/PLL-CHX)10 multilayer films showed lower infections incidence and inflammation than the unmodified group, and all parameters are close to SHAM group. Conclusion (MMT/PLL-CHX)10 multilayer films provides a potential therapeutic method for orthopaedic implant-related infections.
Collapse
Affiliation(s)
- Xin Liao
- The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Jiande, Hangzhou, Zhejiang, China
| | - Xingfang Yu
- Department of Orthopedics, The Affiliated Yiwu Hospital of Wenzhou Medical University, 699 Jiangdong Road, Yiwu, 322000, Zhejiang, China
| | - Haiping Yu
- The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Jiande, Hangzhou, Zhejiang, China
| | - Jiaqi Huang
- The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Jiande, Hangzhou, Zhejiang, China
| | - Bi Zhang
- The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Jiande, Hangzhou, Zhejiang, China
| | - Jie Xiao
- The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Jiande, Hangzhou, Zhejiang, China.
| |
Collapse
|
46
|
Ilić N, Kosanović M, Gruden-Movsesijan A, Glamočlija S, Sofronić-Milosavljević L, Čolić M, Tomić S. Harnessing immunomodulatory mechanisms of Trichinella spiralis to design novel nanomedical approaches for restoring self-tolerance in autoimmunity. Immunol Lett 2021; 238:57-67. [PMID: 34363897 DOI: 10.1016/j.imlet.2021.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/28/2021] [Accepted: 04/28/2021] [Indexed: 01/13/2023]
Abstract
The rapid increase in the prevalence of autoimmune diseases in recent decades, especially in developed countries, coincided with improved living conditions and healthcare. Part of this increase could be ascribed to the lack of exposure to infectious agents like helminths that co-evolved with us and display potent immune regulatory actions. In this review we discussed many investigations, including our own, showing that Trichinella spiralis via its excretory-secretory products attenuate Th1/Th17 immunopathological response in autoimmunity and potentiate the protective Th2 and or regulatory T cell response, acting as an effective induction of tolerogenic dendritic cells (DCs), and probably mimicking the autoantigen in some diseases. A recent discovery of T. spiralis extracellular vesicles (TsEVs) suggested that inducing a complex regulation of the immune response requires simultaneous delivery of different signals in nano-sized packages. Indeed, different artificial nanomedical approaches discussed here suggested that co-delivery of multiple signals via nanoparticles is the most promising strategy for the treatment of autoimmune diseases. Although a long way is ahead of us before we could completely replicate natural nano-delivery systems which are both safe and potent in restoring self-tolerance, a clear path is being opened from a careful examination of parasite-host interactions.
Collapse
Affiliation(s)
- Nataša Ilić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Maja Kosanović
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Alisa Gruden-Movsesijan
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Sofija Glamočlija
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Ljiljana Sofronić-Milosavljević
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia
| | - Miodrag Čolić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia; Medical Faculty Foča, University of East Sarajevo, Bosnia and Hercegovina; Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University in Belgrade, Serbia.
| |
Collapse
|
47
|
Musielak M, Potoczny J, Boś-Liedke A, Kozak M. The Combination of Liposomes and Metallic Nanoparticles as Multifunctional Nanostructures in the Therapy and Medical Imaging-A Review. Int J Mol Sci 2021; 22:6229. [PMID: 34207682 PMCID: PMC8229649 DOI: 10.3390/ijms22126229] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/24/2022] Open
Abstract
Nanotechnology has introduced a new quality and has definitely developed the possibilities of treating and diagnosing various diseases. One of the scientists' interests is liposomes and metallic nanoparticles (LipoMNPs)-the combination of which has introduced new properties and applications. However, the field of creating hybrid nanostructures consisting of liposomes and metallic nanoparticles is relatively little understood. The purpose of this review was to compile the latest reports in the field of treatment and medical imaging using of LipoMNPs. The authors focused on presenting this issue in the direction of improving the used conventional treatment and imaging methods. Most of all, the nature of bio-interactions between nanostructures and cells is not sufficiently taken into account. As a result, overcoming the existing limitations in the implementation of such solutions in the clinic is difficult. We concluded that hybrid nanostructures are used in a very wide range, especially in the treatment of cancer and magnetic resonance imaging. There were also solutions that combine treatments with simultaneous imaging, creating a theragnostic approach. In the future, researchers should focus on the description of the biological interactions and the long-term effects of the nanostructures to use LipoMNPs in the treatment of patients.
Collapse
Affiliation(s)
- Marika Musielak
- Department of Electroradiology, Poznan University of Medical Sciences, 61-701 Poznań, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, 61-866 Poznań, Poland
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland; (A.B.-L.); (M.K.)
| | - Jakub Potoczny
- Heliodor Swiecicki Clinical Hospital in Poznan, 60-355 Poznań, Poland;
| | - Agnieszka Boś-Liedke
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland; (A.B.-L.); (M.K.)
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland; (A.B.-L.); (M.K.)
| |
Collapse
|
48
|
|
49
|
Veloso SRS, Andrade RGD, Castanheira EMS. Magnetoliposomes: recent advances in the field of controlled drug delivery. Expert Opin Drug Deliv 2021; 18:1323-1334. [PMID: 33836636 DOI: 10.1080/17425247.2021.1915983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Magnetoliposomes have gained increasing attention as delivery systems, as they surpass many limitations associated with liposomes. The combination with magnetic nanoparticles provides a means for development of multimodal and multifunctional theranostic agents that enable on-demand drug release and real-time monitoring of therapy. AREAS COVERED Recently, several magnetoliposome structures have been reported to ensure efficient transport and delivery of therapeutics, while improving magnetic properties. Besides, novel techniques have been introduced to improve on-demand release, as well as to achieve sequential release of different therapeutic agents. This review presents the major types and methods of preparation of magnetoliposomes, and discusses recent strategies in the trigger of drug release, development of theranostic formulations, and delivery of drugs and biological entities. EXPERT OPINION Despite significant advances in efficient drug delivery, current literature lacks an assessment of formulations as theranostic agents and complementary techniques to optimize thermotherapy efficiency. Plasmonic magnetoliposomes are highly promising multimodal and multifunctional systems, providing the required design versatility to optimize theranostic capabilities. Further, photodynamic therapy and delivery of proteins/genes can be improved with a deeper research on the employed magnetic material and associated toxicity. A scale-up procedure is also lacking in recent research, which is limiting their translation to clinical use.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Raquel G D Andrade
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, Braga, Portugal
| | - Elisabete M S Castanheira
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
50
|
Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm 2021; 601:120571. [PMID: 33812967 DOI: 10.1016/j.ijpharm.2021.120571] [Citation(s) in RCA: 492] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/18/2022]
Abstract
Liposomes are spherical vesicles consisting of one or more concentric phospholipid bilayers enclosing an aqueous core. Being both nontoxic and biodegradable, liposomes represent a powerful delivery system for several drugs. They have improved the therapeutic efficacy of drugs through stabilizing compounds, overcoming obstacles to cellular and tissue uptake and increasing drug biodistribution to target sites in vivo, while minimizing systemic toxicity. This review offers an overview of liposomes, thought the exploration of their key fundamentals. Initially, the main design aspects to obtain a successful liposomal formulation were addressed, following the techniques for liposome production and drug loading. Before application, liposomes required an extensive characterization to assurance in vitro and in vivo performance. Thus, several properties to characterize liposomes were explored, such as size, polydispersity index, zeta potential, shape, lamellarity, phase behavior, encapsulation efficiency, and in vitro drug release. Topics related with liposomal functionalization and effective targeting strategies were also addressed, as well as stability and some limitations of liposomes. Finally, this review intends to explore the current market liposomes used as a drug delivery system in different therapeutic applications.
Collapse
|