1
|
Liu Z, Tee SY, Guan G, Han MY. Atomically Substitutional Engineering of Transition Metal Dichalcogenide Layers for Enhancing Tailored Properties and Superior Applications. NANO-MICRO LETTERS 2024; 16:95. [PMID: 38261169 PMCID: PMC10805767 DOI: 10.1007/s40820-023-01315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Transition metal dichalcogenides (TMDs) are a promising class of layered materials in the post-graphene era, with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior. Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties, providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs. The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable (opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts (0-100%). Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase, band alignment/structure, carrier density, and surface reactive activity, enabling novel and promising applications. This review comprehensively elaborates on atomically substitutional engineering in TMD layers, including theoretical foundations, synthetic strategies, tailored properties, and superior applications. The emerging type of ternary TMDs, Janus TMDs, is presented specifically to highlight their typical compounds, fabrication methods, and potential applications. Finally, opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.
Collapse
Affiliation(s)
- Zhaosu Liu
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Si Yin Tee
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| | - Guijian Guan
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Ming-Yong Han
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
2
|
Yao J, Yang G. 2D Layered Material Alloys: Synthesis and Application in Electronic and Optoelectronic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103036. [PMID: 34719873 PMCID: PMC8728821 DOI: 10.1002/advs.202103036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/01/2021] [Indexed: 05/12/2023]
Abstract
2D layered materials (2DLMs) have come under the limelight of scientific and engineering research and broke new ground across a broad range of disciplines in the past decade. Nevertheless, the members of stoichiometric 2DLMs are relatively limited. This renders them incompetent to fulfill the multitudinous scenarios across the breadth of electronic and optoelectronic applications since the characteristics exhibited by a specific material are relatively monotonous and limited. Inspiringly, alloying of 2DLMs can markedly broaden the 2D family through composition modulation and it has ushered a whole new research domain: 2DLM alloy nano-electronics and nano-optoelectronics. This review begins with a comprehensive survey on synthetic technologies for the production of 2DLM alloys, which include chemical vapor transport, chemical vapor deposition, pulsed-laser deposition, and molecular beam epitaxy, spanning their development, as well as, advantages and disadvantages. Then, the up-to-date advances of 2DLM alloys in electronic devices are summarized. Subsequently, the up-to-date advances of 2DLM alloys in optoelectronic devices are summarized. In the end, the ongoing challenges of this emerging field are highlighted and the future opportunities are envisioned, which aim to navigate the coming exploration and fully exert the pivotal role of 2DLMs toward the next generation of electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| |
Collapse
|
3
|
Li C, Zhu J, Du W, Huang Y, Xu H, Zhai Z, Zou G. The Photodetectors Based on Lateral Monolayer MoS 2/WS 2 Heterojunctions. NANOSCALE RESEARCH LETTERS 2021; 16:123. [PMID: 34331611 PMCID: PMC8325733 DOI: 10.1186/s11671-021-03581-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Monolayer transition metal dichalcogenides (TMDs) show promising potential for next-generation optoelectronics due to excellent light capturing and photodetection capabilities. Photodetectors, as important components of sensing, imaging and communication systems, are able to perceive and convert optical signals to electrical signals. Herein, the large-area and high-quality lateral monolayer MoS2/WS2 heterojunctions were synthesized via the one-step liquid-phase chemical vapor deposition approach. Systematic characterization measurements have verified good uniformity and sharp interfaces of the channel materials. As a result, the photodetectors enhanced by the photogating effect can deliver competitive performance, including responsivity of ~ 567.6 A/W and detectivity of ~ 7.17 × 1011 Jones. In addition, the 1/f noise obtained from the current power spectrum is not conductive to the development of photodetectors, which is considered as originating from charge carrier trapping/detrapping. Therefore, this work may contribute to efficient optoelectronic devices based on lateral monolayer TMD heterostructures.
Collapse
Affiliation(s)
- Caihong Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Juntong Zhu
- the College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, People's Republic of China
| | - Wen Du
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Yixuan Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Hao Xu
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
- the State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| | - Zhengang Zhai
- the 36th Research Institute of China Electronics Technology Group Corporation, Jiaxing, 314033, People's Republic of China
| | - Guifu Zou
- the College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
4
|
Ghosh S, Varghese A, Thakar K, Dhara S, Lodha S. Enhanced responsivity and detectivity of fast WSe 2 phototransistor using electrostatically tunable in-plane lateral p-n homojunction. Nat Commun 2021; 12:3336. [PMID: 34099709 PMCID: PMC8185115 DOI: 10.1038/s41467-021-23679-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/28/2021] [Indexed: 02/05/2023] Open
Abstract
Layered transition metal dichalcogenides have shown tremendous potential for photodetection due to their non-zero direct bandgaps, high light absorption coefficients and carrier mobilities, and ability to form atomically sharp and defect-free heterointerfaces. A critical and fundamental bottleneck in the realization of high performance detectors is their trap-dependent photoresponse that trades off responsivity with speed. This work demonstrates a facile method of attenuating this trade-off by nearly 2x through integration of a lateral, in-plane, electrostatically tunable p-n homojunction with a conventional WSe2 phototransistor. The tunable p-n junction allows modulation of the photocarrier population and width of the conducting channel independently from the phototransistor. Increased illumination current with the lateral p-n junction helps achieve responsivity enhancement upto 2.4x at nearly the same switching speed (14-16 µs) over a wide range of laser power (300 pW-33 nW). The added benefit of reduced dark current enhances specific detectivity (D*) by nearly 25x to yield a maximum measured flicker noise-limited D* of 1.1×1012 Jones. High responsivity of 170 A/W at 300 pW laser power along with the ability to detect sub-1 pW laser switching are demonstrated.
Collapse
Affiliation(s)
- Sayantan Ghosh
- Department of Electrical Engineering, IIT Bombay, Mumbai, India
| | - Abin Varghese
- Department of Electrical Engineering, IIT Bombay, Mumbai, India
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
- IITB-Monash Research Academy, IIT Bombay, Mumbai, India
| | - Kartikey Thakar
- Department of Electrical Engineering, IIT Bombay, Mumbai, India
| | - Sushovan Dhara
- Department of Electrical Engineering, IIT Bombay, Mumbai, India
| | - Saurabh Lodha
- Department of Electrical Engineering, IIT Bombay, Mumbai, India.
| |
Collapse
|
5
|
Zhang K, Feng S, Kang S, Wu Y, Zhang M, Wang Q, Tao Z, Fan Y, Lu W. Hybrid structure of PbS QDs and vertically-few-layer MoS 2 nanosheets array for broadband photodetector. NANOTECHNOLOGY 2021; 32:145602. [PMID: 33438586 DOI: 10.1088/1361-6528/abd57f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel three-dimensional (3D) vertically-few-layer MoS2 (V-MoS2) nanosheets- zero-dimensional PbS quantum dots (QDs) hybrid structure based broadband photodetector was fabricated, and its photoelectric performance was investigated in detail. We synthesized the V-MoS2 nanosheets by chemical vapor deposition, using the TiO2 layer as the induced layer, and proposed a possible growth mechanism. The use of the TiO2 induction layer successfully changed the growth direction of MoS2 from parallel to vertical. The prepared V-MoS2 nanosheets have a large specific surface area, abundantly exposed edges and excellent light absorption capacity. The V-MoS2 nanosheets detector was then fabricated and investigated, which exhibits a high sensitivity for 635 nm light, a fast response time and an excellent photoelectric response. The V-MoS2 nanosheets with a height of approximately 1 μm successfully broke the light absorption limit caused by the atomic thickness. Finally, we fabricated the PbS QDs/V-MoS2 nanosheets hybrid detector and demonstrated their potential for high-performance broadband photodetectors. The response wavelength of the hybrid detector extends from the visible band to the near-infrared band. The responsivity of the hybrid detector reaches 1.46 A W-1 under 1450 nm illumination. The combination of 3D MoS2 nanosheets and QDs further improves the performance of MoS2-based photodetector devices. We believe that the proposed zero-dimensional QDs and 3D vertical nanosheets hybrid structure broadband photodetector provides a promising way for the next-generation optoelectronic devices.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory of In-Fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin, 150001, People's Republic of China. Chongqing Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Li B, Chen X, Su C, Han Y, Wang H, Zeng M, Wang Y, Liang T, Yang Z, Xu L. Enhanced dimethyl methylphosphonate detection based on two-dimensional WSe 2 nanosheets at room temperature. Analyst 2021; 145:8059-8067. [PMID: 33078181 DOI: 10.1039/d0an01671c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chemical warfare agents, particularly nerve agents such as sarin, are exceptionally harmful and incredibly perilous to people. Thus, the sensitive detection of these gases is indispensable for reducing the risk of chemical weapons. Herein, we fabricated a room-temperature chemiresistive gas sensor based on two-dimensional few-layer tungsten diselenide (WSe2) nanosheets, which were prepared through a facile liquid-phase exfoliation method. The WSe2-based sensor has demonstrated sensitive and selective detection of dimethyl methylphosphonate (DMMP), which is a well-known simulant of the nerve agent sarin. The sensor based on WSe2 nanosheets revealed a high response reaching 8.91% to 10 ppm DMMP with a fast response time of 100 s. Furthermore, the sensor displayed reliable stability, excellent selectivity, and a low theoretical limit of detection of about 122 ppb. The enhanced sensing performance of WSe2 nanosheets can be ascribed to the increase of the specific surface area, which provides more active adsorption sites for DMMP molecules, thereby facilitating the charge transfer process between DMMP molecules and WSe2 nanosheets. Overall, our results indicate that two-dimensional transition metal dichalcogenide materials have the potential for the design and fabrication of high-performance nerve agent sensing devices.
Collapse
Affiliation(s)
- Bolong Li
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, Center for Advanced Electronic Materials and Devices, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gong Y, Lin Z, Chen YX, Khan Q, Wang C, Zhang B, Nie G, Xie N, Li D. Two-Dimensional Platinum Diselenide: Synthesis, Emerging Applications, and Future Challenges. NANO-MICRO LETTERS 2020; 12:174. [PMID: 34138169 PMCID: PMC7770737 DOI: 10.1007/s40820-020-00515-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/04/2020] [Indexed: 05/25/2023]
Abstract
In recent years, emerging two-dimensional (2D) platinum diselenide (PtSe2) has quickly attracted the attention of the research community due to its novel physical and chemical properties. For the past few years, increasing research achievements on 2D PtSe2 have been reported toward the fundamental science and various potential applications of PtSe2. In this review, the properties and structure characteristics of 2D PtSe2 are discussed at first. Then, the recent advances in synthesis of PtSe2 as well as their applications are reviewed. At last, potential perspectives in exploring the application of 2D PtSe2 are reviewed.
Collapse
Affiliation(s)
- Youning Gong
- Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Zhitao Lin
- Faculty of Information Technology, Macau University of Science and Technology, Macau, 519020, People's Republic of China
| | - Yue-Xing Chen
- Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Qasim Khan
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Cong Wang
- Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Bin Zhang
- Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Guohui Nie
- Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Ni Xie
- Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Delong Li
- Institute of Microscale Optoelectronics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
8
|
Chen J, Luo Y, Zhang W, Qiao Y, Cao X, Xie X, Zhou H, Pan A, Liang S. Tuning Interface Bridging Between MoSe 2 and Three-Dimensional Carbon Framework by Incorporation of MoC Intermediate to Boost Lithium Storage Capability. NANO-MICRO LETTERS 2020; 12:171. [PMID: 34138178 PMCID: PMC7770767 DOI: 10.1007/s40820-020-00511-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/03/2020] [Indexed: 05/24/2023]
Abstract
Highlights MoSe2/MoC/C multiphase boundaries boost ionic transfer kinetics. MoSe2 (5–10 nm) with rich edge sites is uniformly coated in N-doped framework. The obtained MoSe2 nanodots achieved ultralong cycle performance in LIBs and high capacity retention in full cell. Abstract Interface engineering has been widely explored to improve the electrochemical performances of composite electrodes, which governs the interface charge transfer, electron transportation, and structural stability. Herein, MoC is incorporated into MoSe2/C composite as an intermediate phase to alter the bridging between MoSe2- and nitrogen-doped three-dimensional (3D) carbon framework as MoSe2/MoC/N–C connection, which greatly improve the structural stability, electronic conductivity, and interfacial charge transfer. Moreover, the incorporation of MoC into the composites inhibits the overgrowth of MoSe2 nanosheets on the 3D carbon framework, producing much smaller MoSe2 nanodots. The obtained MoSe2 nanodots with fewer layers, rich edge sites, and heteroatom doping ensure the good kinetics to promote pseudo-capacitance contributions. Employing as anode material for lithium-ion batteries, it shows ultralong cycle life (with 90% capacity retention after 5000 cycles at 2 A g−1) and excellent rate capability. Moreover, the constructed LiFePO4//MoSe2/MoC/N–C full cell exhibits over 86% capacity retention at 2 A g−1 after 300 cycles. The results demonstrate the effectiveness of the interface engineering by incorporation of MoC as interface bridging intermediate to boost the lithium storage capability, which can be extended as a potential general strategy for the interface engineering of composite materials. Electronic supplementary material The online version of this article (10.1007/s40820-020-00511-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Chen
- School of Materials Science and Engineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Yilin Luo
- School of Materials Science and Engineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Wenchao Zhang
- Institute for Superconducting and Electronic Materials, School of Mechanical, Materials, Mechatronics and Biomedical Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Yu Qiao
- Energy Interface Technology Group, National Institute of Advanced Industrial Science and Technology, 1-1-1, Umezono, Tsukuba, 305-8568, Japan
| | - Xinxin Cao
- School of Materials Science and Engineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Xuefang Xie
- School of Materials Science and Engineering, Central South University, Changsha, 410083, Hunan, People's Republic of China
| | - Haoshen Zhou
- Energy Interface Technology Group, National Institute of Advanced Industrial Science and Technology, 1-1-1, Umezono, Tsukuba, 305-8568, Japan
| | - Anqiang Pan
- School of Materials Science and Engineering, Central South University, Changsha, 410083, Hunan, People's Republic of China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, People's Republic of China.
| | - Shuquan Liang
- School of Materials Science and Engineering, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| |
Collapse
|
9
|
Nalwa HS. A review of molybdenum disulfide (MoS 2) based photodetectors: from ultra-broadband, self-powered to flexible devices. RSC Adv 2020; 10:30529-30602. [PMID: 35516069 PMCID: PMC9056353 DOI: 10.1039/d0ra03183f] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/17/2020] [Indexed: 12/23/2022] Open
Abstract
Two-dimensional transition metal dichalcogenides (2D TMDs) have attracted much attention in the field of optoelectronics due to their tunable bandgaps, strong interaction with light and tremendous capability for developing diverse van der Waals heterostructures (vdWHs) with other materials. Molybdenum disulfide (MoS2) atomic layers which exhibit high carrier mobility and optical transparency are very suitable for developing ultra-broadband photodetectors to be used from surveillance and healthcare to optical communication. This review provides a brief introduction to TMD-based photodetectors, exclusively focused on MoS2-based photodetectors. The current research advances show that the photoresponse of atomic layered MoS2 can be significantly improved by boosting its charge carrier mobility and incident light absorption via forming MoS2 based plasmonic nanostructures, halide perovskites-MoS2 heterostructures, 2D-0D MoS2/quantum dots (QDs) and 2D-2D MoS2 hybrid vdWHs, chemical doping, and surface functionalization of MoS2 atomic layers. By utilizing these different integration strategies, MoS2 hybrid heterostructure-based photodetectors exhibited remarkably high photoresponsivity raging from mA W-1 up to 1010 A W-1, detectivity from 107 to 1015 Jones and a photoresponse time from seconds (s) to nanoseconds (10-9 s), varying by several orders of magnitude from deep-ultraviolet (DUV) to the long-wavelength infrared (LWIR) region. The flexible photodetectors developed from MoS2-based hybrid heterostructures with graphene, carbon nanotubes (CNTs), TMDs, and ZnO are also discussed. In addition, strain-induced and self-powered MoS2 based photodetectors have also been summarized. The factors affecting the figure of merit of a very wide range of MoS2-based photodetectors have been analyzed in terms of their photoresponsivity, detectivity, response speed, and quantum efficiency along with their measurement wavelengths and incident laser power densities. Conclusions and the future direction are also outlined on the development of MoS2 and other 2D TMD-based photodetectors.
Collapse
Affiliation(s)
- Hari Singh Nalwa
- Advanced Technology Research 26650 The Old Road Valencia California 91381 USA
| |
Collapse
|