1
|
Yu W, Wang K, Li H, Ma T, Wu Y, Shang Y, Zhang C, Fan F, Lv S. An updated review of few-layer black phosphorus serving as a promising photocatalyst: synthesis, modification and applications. NANOSCALE 2024; 16:19131-19173. [PMID: 39320464 DOI: 10.1039/d4nr02567a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Semiconductor photocatalysts represent a potential strategy to simultaneously solve the global energy shortage and environmental pollution, and black phosphorus (BP) has gained widespread applications in photocatalysis due to its high hole mobility, strong light trapping capabilities, and adjustable band gap. Nevertheless, the original material exhibits unsatisfactory photocatalytic activity in terms of low carrier separation efficiency, weak environmental stability, and difficult to control layer thickness. The following review briefly presents the fundamental characteristics and extensively discusses the synthesis methods and modification strategies for few-layer black phosphorus (FL-BP). Furthermore, various applications of composite photocatalysts derived from FL-BP such as water splitting, pollutant degradation, the carbon dioxide reduction reaction (CO2RR), phototherapy, bacterial disinfection, N2 fixation, and hydrogenation reactions are reviewed. Finally, the opportunities and challenges for the development and further investigation of advanced FL-BP-based photocatalysts are also presented.
Collapse
Affiliation(s)
- Wei Yu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Kaixuan Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Ting Ma
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Yingying Wu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Yongchang Shang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Chenxi Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Fuhao Fan
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Shifei Lv
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
2
|
Patra A, Rout CS. Unveiling the Hidden Potential of Two-Dimensional Black Phosphorus for Advanced Supercapacitor Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18781-18790. [PMID: 39194011 DOI: 10.1021/acs.langmuir.4c00874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
In response to the contemporary energy crisis, researchers have intensified efforts to explore green and renewable energy sources alongside developing robust energy storage devices. Supercapacitors stand out among various storage options due to their high-power density and rapid charge-discharge cycles. However, their lower energy density poses a challenge, leading to exploration of diverse electrode materials, including black phosphorus (BP). BP, with its two-dimensional (2D) layered structure akin to graphene, exhibits exceptional properties, making it a promising candidate for various applications, including energy storage. This Perspective focuses on the properties of BP as an electrode material for supercapacitors, covering electrochemical performance, charge storage mechanisms, and synthesis methods. Challenges such as restacking and stability have prompted innovative strategies to enhance BP-based supercapacitors, both qualitatively and quantitatively. Furthermore, the fabrication of BP-based hybrid nanocomposites with carbonaceous polymers, conducting polymers, and other 2D materials is discussed, highlighting their efficacy as electrode materials along with future outlooks.
Collapse
Affiliation(s)
- Abhinandan Patra
- Centre for Nano and Material Sciences, Jain (Deemed-to-be) University, Jain Global Campus Kanakapura Road, Bangalore 562112, Karnataka, India
| | - Chandra Sekhar Rout
- Centre for Nano and Material Sciences, Jain (Deemed-to-be) University, Jain Global Campus Kanakapura Road, Bangalore 562112, Karnataka, India
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
3
|
Ruan F, Liu C, Zeng J, Zhang F, Jiang Y, Zuo Z, He C. Multi-omics integration identifies ferroptosis involved in black phosphorus quantum dots-induced renal injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174532. [PMID: 38972417 DOI: 10.1016/j.scitotenv.2024.174532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/19/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Black phosphorus quantum dots (BPQDs) have recently emerged as a highly promising contender in biomedical applications ranging from drug delivery systems to cancer therapy modalities. Nevertheless, the potential toxicity and its effects on human health need to be thoroughly investigated. In this study, we utilized multi-omics integrated approaches to explore the complex mechanisms of BPQDs-induced kidney injury. First, histological examination showed severe kidney injury in male mice after subacute exposure to 1 mg/kg BPQDs for 28 days. Subsequently, transcriptomic and metabolomic analyses of kidney tissues exposed to BPQDs identified differentially expressed genes and metabolites associated with ferroptosis, an emerging facet of regulated cell death. Our findings highlight the utility of the multi-omics integrated approach in predicting and elucidating potential toxicological outcomes of nanomaterials. Furthermore, our study provides a comprehensive understanding of the mechanisms driving BPQDs-induced kidney injury, underscoring the importance of recognizing ferroptosis as a potential toxic mechanism associated with BPQDs.
Collapse
Affiliation(s)
- Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Department of Thoracic Surgery, Xiang'an Hospital of Xiamen University, Xiamen 361102, China.
| | - Changqian Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Jie Zeng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Fucong Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yu Jiang
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, China; Molecular Diagnostic Laboratory for Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
4
|
Cao W, Lai D, Yang J, Liu L, Wu H, Wang J, Liu Y. Research Progress on the Preparation Methods for and Flame Retardant Mechanism of Black Phosphorus and Black Phosphorus Nanosheets. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:892. [PMID: 38786848 PMCID: PMC11124063 DOI: 10.3390/nano14100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Black phosphorus and black phosphorus nanosheets are widely used in the flame retardant field because of their excellent properties, but the immature preparation methods have resulted in extremely high preparation cost, which greatly limits their development and application. In this paper, various preparation methods of black phosphorus and black phosphorus nanosheets are described in detail, the advantages and disadvantages of each method are analyzed in depth, the flame-retardant mechanism and application of black phosphorus and black phosphorus nanosheets in flame retardants are discussed, and the subsequent development direction of black phosphorus and black phosphorus nanosheets is proposed.
Collapse
Affiliation(s)
- Wuyan Cao
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (W.C.); (L.L.); (H.W.); (Y.L.)
| | - Dengwang Lai
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (W.C.); (L.L.); (H.W.); (Y.L.)
| | - Jun Yang
- Zhuzhou Times New Material Technology Co., Ltd., Zhuzhou 412007, China;
| | - Li Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (W.C.); (L.L.); (H.W.); (Y.L.)
| | - Hao Wu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (W.C.); (L.L.); (H.W.); (Y.L.)
| | - Jin Wang
- Zhuzhou Times New Material Technology Co., Ltd., Zhuzhou 412007, China;
| | - Yuejun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (W.C.); (L.L.); (H.W.); (Y.L.)
| |
Collapse
|
5
|
Abioye SO, Majooni Y, Moayedi M, Rezvani H, Kapadia M, Yousefi N. Graphene-based nanomaterials for the removal of emerging contaminants of concern from water and their potential adaptation for point-of-use applications. CHEMOSPHERE 2024; 355:141728. [PMID: 38499073 DOI: 10.1016/j.chemosphere.2024.141728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
Considering the plethora of work on the exceptional environmental performance of 2D nanomaterials, there is still a missing link in addressing their practical application in point-of-use (POU) water treatment. By reviewing the exceptional environmental performance of 2D nanomaterials with specific emphasis on graphene and its derivatives, this review aims at inspiring further discussions and research in graphene-based POU water treatment with particular focus on the removal of emerging contaminants of concern (ECCs), which is largely missing in the literature. We outlined the prevalence of ECCs in the environment, their health effects both on humans and marine life, and the potential of efficiently removing them from water using three-dimensional graphene-based macrostructures to ensure ease of adsorbent recovery and reuse compared to nanostructures. Given various successful studies showing superior adsorption capacity of graphene nanosheets, we give an account of the recent developments in graphene-based adsorbents. Moreover, several cost-effective materials which can be easily self-assembled with nanosheets to improve their environmental performance and safety for POU water treatment purposes were highlighted. We highlighted the strategy to overcome challenges of adsorbent regeneration and contaminant degradation; and concluded by noting the need for policy makers to act decisively considering the conservative nature of the water treatment industry, and the potential health risks from ingesting ECCs through drinking water. We further justified the need for the development of advanced POU water treatment devices in the face of the growing challenges regarding ECCs in surface water, and the rising cases of drinking water advisories across the world.
Collapse
Affiliation(s)
- Samson Oluwafemi Abioye
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Yalda Majooni
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada; Department of Aerospace Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Mahsa Moayedi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Hadi Rezvani
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Mihir Kapadia
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada
| | - Nariman Yousefi
- Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, M5B 2K3, ON, Canada.
| |
Collapse
|
6
|
Sharma A, Singh PK, Makki E, Giri J, Sathish T. A comprehensive review of critical analysis of biodegradable waste PCM for thermal energy storage systems using machine learning and deep learning to predict dynamic behavior. Heliyon 2024; 10:e25800. [PMID: 38356509 PMCID: PMC10865038 DOI: 10.1016/j.heliyon.2024.e25800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/06/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
This article explores the use of phase change materials (PCMs) derived from waste, in energy storage systems. It emphasizes the potential of these PCMs in addressing concerns related to fossil fuel usage and environmental impact. This article also highlights the aspects of these PCMs including reduced reliance on renewable resources minimized greenhouse gas emissions and waste reduction. The study also discusses approaches such as integrating nanotechnology to enhance thermal conductivity and utilizing machine learning and deep learning techniques for predicting dynamic behavior. The article provides an overall view of research on biodegradable waste-based PCMs and how they can play a promising role in achieving energy-efficient and sustainable thermal storage systems. However, specific conclusions drawn from the presented results are not explicitly outlined, leaving room, for investigation and exploration in this evolving field. Artificial neural network (ANN) predictive models for thermal energy storage devices perform differently. With a 4% adjusted mean absolute error, the Gaussian radial basis function kernel Support Vector Regression (SVR) model captured heat-related charging and discharging issues. The ANN model predicted finned tube heat and heat flux better than the numerical model. SVM models outperformed ANN and ANFIS in some datasets. Material property predictions favored gradient boosting, but Linear Regression and SVR models performed better, emphasizing application- and dataset-specific model selection. These predictive models provide insights into the complex thermal performance of building structures, aiding in the design and operation of energy-efficient systems. Biodegradable waste-based PCMs' sustainability includes carbon footprint, waste reduction, biodegradability, and circular economy alignment. Nanotechnology, machine learning, and deep learning improve thermal conductivity and prediction. Circular economy principles include waste reduction and carbon footprint reduction. Specific results-based conclusions are not stated. Presenting a comprehensive overview of current research highlights biodegradable waste-based PCMs' potential for energy-efficient and sustainable thermal storage systems.
Collapse
Affiliation(s)
- Aman Sharma
- Department of Mechanical Engineering, GLA University, Mathura, 281406, India
| | - Pradeep Kumar Singh
- Department of Mechanical Engineering, GLA University, Mathura, 281406, India
| | - Emad Makki
- Department of Mechanical Engineering, College of Engineering and Architecture, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Jayant Giri
- Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, 44111, India
| | - T. Sathish
- Saveetha School of Engineering, SIMATS, Chennai 602 105, Tamil Nadu, India
| |
Collapse
|
7
|
Zhai W, Chen Y, Liu Y, Ma Y, Vijayakumar P, Qin Y, Qu Y, Dai Z. Covalently Bonded Ni Sites in Black Phosphorene with Electron Redistribution for Efficient Metal-Lightweighted Water Electrolysis. NANO-MICRO LETTERS 2024; 16:115. [PMID: 38353749 PMCID: PMC10866855 DOI: 10.1007/s40820-024-01331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/26/2023] [Indexed: 02/17/2024]
Abstract
The metal-lightweighted electrocatalysts for water splitting are highly desired for sustainable and economic hydrogen energy deployments, but challengeable. In this work, a low-content Ni-functionalized approach triggers the high capability of black phosphorene (BP) with hydrogen and oxygen evolution reaction (HER/OER) bifunctionality. Through a facile in situ electro-exfoliation route, the ionized Ni sites are covalently functionalized in BP nanosheets with electron redistribution and controllable metal contents. It is found that the as-fabricated Ni-BP electrocatalysts can drive the water splitting with much enhanced HER and OER activities. In 1.0 M KOH electrolyte, the optimized 1.5 wt% Ni-functionalized BP nanosheets have readily achieved low overpotentials of 136 mV for HER and 230 mV for OER at 10 mA cm-2. Moreover, the covalently bonding between Ni and P has also strengthened the catalytic stability of the Ni-functionalized BP electrocatalyst, stably delivering the overall water splitting for 50 h at 20 mA cm-2. Theoretical calculations have revealed that Ni-P covalent binding can regulate the electronic structure and optimize the reaction energy barrier to improve the catalytic activity effectively. This work confirms that Ni-functionalized BP is a suitable candidate for electrocatalytic overall water splitting, and provides effective strategies for constructing metal-lightweighted economic electrocatalysts.
Collapse
Affiliation(s)
- Wenfang Zhai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Ya Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yaoda Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yuanyuan Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | | | - Yuanbin Qin
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yongquan Qu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Zhengfei Dai
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
8
|
Li Y, Xie J, Wang R, Min S, Xu Z, Ding Y, Su P, Zhang X, Wei L, Li JF, Chu Z, Sun J, Huang C. Textured Asymmetric Membrane Electrode Assemblies of Piezoelectric Phosphorene and Ti 3C 2T x MXene Heterostructures for Enhanced Electrochemical Stability and Kinetics in LIBs. NANO-MICRO LETTERS 2024; 16:79. [PMID: 38189993 PMCID: PMC10774488 DOI: 10.1007/s40820-023-01265-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 01/09/2024]
Abstract
Black phosphorus with a superior theoretical capacity (2596 mAh g-1) and high conductivity is regarded as one of the powerful candidates for lithium-ion battery (LIB) anode materials, whereas the severe volume expansion and sluggish kinetics still impede its applications in LIBs. By contrast, the exfoliated two-dimensional phosphorene owns negligible volume variation, and its intrinsic piezoelectricity is considered to be beneficial to the Li-ion transfer kinetics, while its positive influence has not been discussed yet. Herein, a phosphorene/MXene heterostructure-textured nanopiezocomposite is proposed with even phosphorene distribution and enhanced piezo-electrochemical coupling as an applicable free-standing asymmetric membrane electrode beyond the skin effect for enhanced Li-ion storage. The experimental and simulation analysis reveals that the embedded phosphorene nanosheets not only provide abundant active sites for Li-ions, but also endow the nanocomposite with favorable piezoelectricity, thus promoting the Li-ion transfer kinetics by generating the piezoelectric field serving as an extra accelerator. By waltzing with the MXene framework, the optimized electrode exhibits enhanced kinetics and stability, achieving stable cycling performances for 1,000 cycles at 2 A g-1, and delivering a high reversible capacity of 524 mAh g-1 at - 20 ℃, indicating the positive influence of the structural merits of self-assembled nanopiezocomposites on promoting stability and kinetics.
Collapse
Affiliation(s)
- Yihui Li
- Volta and DiPole Materials Labs, College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, People's Republic of China
- High Density Materials Technology Center for Flexible Hybrid Electronics, Suzhou Institute of Electronic Functional Materials Technology, Suzhou Industrial Technology Research Institute, Suzhou, 215151, People's Republic of China
| | - Juan Xie
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Ruofei Wang
- College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Shugang Min
- College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Zewen Xu
- Volta and DiPole Materials Labs, College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, People's Republic of China.
- High Density Materials Technology Center for Flexible Hybrid Electronics, Suzhou Institute of Electronic Functional Materials Technology, Suzhou Industrial Technology Research Institute, Suzhou, 215151, People's Republic of China.
| | - Yangjian Ding
- Volta and DiPole Materials Labs, College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, People's Republic of China
- High Density Materials Technology Center for Flexible Hybrid Electronics, Suzhou Institute of Electronic Functional Materials Technology, Suzhou Industrial Technology Research Institute, Suzhou, 215151, People's Republic of China
| | - Pengcheng Su
- Volta and DiPole Materials Labs, College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, People's Republic of China
- High Density Materials Technology Center for Flexible Hybrid Electronics, Suzhou Institute of Electronic Functional Materials Technology, Suzhou Industrial Technology Research Institute, Suzhou, 215151, People's Republic of China
| | - Xingmin Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, People's Republic of China
| | - Liyu Wei
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jing-Feng Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Zhaoqiang Chu
- College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Jingyu Sun
- Volta and DiPole Materials Labs, College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, People's Republic of China
| | - Cheng Huang
- Volta and DiPole Materials Labs, College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, Soochow University, Suzhou, 215006, People's Republic of China.
- High Density Materials Technology Center for Flexible Hybrid Electronics, Suzhou Institute of Electronic Functional Materials Technology, Suzhou Industrial Technology Research Institute, Suzhou, 215151, People's Republic of China.
- Institute of Advanced Materials and Institute of Membrane Science and Technology, Jiangsu National Synergistic Innovation Center for Advanced Materials, Suzhou Laboratory and Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
9
|
Huang Y, Wang C, Lv H, Xie Y, Zhou S, Ye Y, Zhou E, Zhu T, Xie H, Jiang W, Wu X, Kong X, Jin H, Ji H. Bifunctional Interphase Promotes Li + De-Solvation and Transportation Enabling Fast-Charging Graphite Anode at Low Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308675. [PMID: 38100819 DOI: 10.1002/adma.202308675] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/11/2023] [Indexed: 12/17/2023]
Abstract
The most successful lithium-ion batteries (LIBs) based on ethylene carbonate electrolytes and graphite anodes still suffer from severe energy and power loss at temperatures below -20 °C, which is because of high viscosity or even solidification of electrolytes, sluggish de-solvation of Li+ at the electrode surface, and slow Li+ transportation in solid electrolyte interphase (SEI). Here, a coherent lithium phosphide (Li3 P) coating firmly bonding to the graphite surface to effectively address these challenges is engineered. The dense, continuous, and robust Li3 P interphase with high ionic conductivity enhances Li+ transportation across the SEI. Plus, it promotes Li+ de-solvation through an electron transfer mechanism, which simultaneously accelerates the charge transport kinetics and stands against the co-intercalation of low-melting-point solvent molecules, such as propylene carbonate (PC), 1,3-dioxolane, and 1,2-dimethoxyethane. Consequently, an unprecedented combination of high-capacity retention and fast-charging ability for LIBs at low temperatures is achieved. In full-cells encompassing the Li3 P-coated graphite anode and PC electrolytes, an impressive 70% of their room-temperature capacity is attained at -20 °C with a 4 C charging rate and a 65% capacity retention is achieved at -40 °C with a 0.05 C charging rate. This research pioneers a transformative trajectory in fortifying LIB performance in cryogenic environments.
Collapse
Affiliation(s)
- Yingshan Huang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Chaonan Wang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Haifeng Lv
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Yuansen Xie
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- Ningde Amperex Technology Limited (ATL), Ningde, 352100, China
| | - Shaoyun Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- Ningde Amperex Technology Limited (ATL), Ningde, 352100, China
| | - Yadong Ye
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - En Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Tianyuan Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Huanyu Xie
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Jiang
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaojun Wu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Xianghua Kong
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hongchang Jin
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Hengxing Ji
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
10
|
Yuan Y, Peng X, Weng X, He J, Liao C, Wang Y, Liu L, Zeng S, Song J, Qu J. Two-dimensional nanomaterials as enhanced surface plasmon resonance sensing platforms: Design perspectives and illustrative applications. Biosens Bioelectron 2023; 241:115672. [PMID: 37716156 DOI: 10.1016/j.bios.2023.115672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
Both increasing demand for ultrasensitive detection in the scientific community and significant new breakthroughs in materials science field have inspired and promoted the development of new-generation multifunctional plasmonic sensing platforms by adopting promising plasmonic nanomaterials. Recently, high-quality surface plasmon resonance (SPR) sensors, assisted by two dimensional (2D) nanomaterials including 2D van der Waals (vdWs) materials (such as graphene/graphene oxide, transition metal dichalcogenides (TMDs), phosphorene, antimonene, tellurene, MXenes, and metal oxides), 2D metal-organic frameworks (MOFs), 2D hyperbolic metamaterials (HMMs), and 2D optical metasurfaces, have emerged as a class of novel plasmonic sensing platforms that show unprecedented detection sensitivity and impressive performance. This review of recent progress in 2D nanomaterials-enhanced SPR platforms will highlight their compelling plasmonic enhancement features, working mechanisms, and design methodologies, as well as discuss illustrative practical applications. Hence, it is of great importance to describe the latest research progress in 2D nanomaterials-enhanced SPR sensing cases. In this review, we present some concepts of SPR enhanced by 2D nanomaterials, including the basic principles of SPR, signal modulation approaches, and working enhancement mechanisms for various 2D materials-enhanced SPR systems. In addition, we also demonstrate a detailed categorization of 2D nanomaterials-enhanced SPR sensing platforms and comment on their ability to realize ultrasensitive SPR detection. Finally, we conclude with future perspectives for exploring a new generation of 2D nanomaterials-based sensors.
Collapse
Affiliation(s)
- Yufeng Yuan
- School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiao Peng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiaoyu Weng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jun He
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Changrui Liao
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yiping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Liwei Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shuwen Zeng
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, Université de Technologie de Troyes, 10000, Troyes, France.
| | - Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
11
|
Tian H, Wang J, Lai G, Dou Y, Gao J, Duan Z, Feng X, Wu Q, He X, Yao L, Zeng L, Liu Y, Yang X, Zhao J, Zhuang S, Shi J, Qu G, Yu XF, Chu PK, Jiang G. Renaissance of elemental phosphorus materials: properties, synthesis, and applications in sustainable energy and environment. Chem Soc Rev 2023; 52:5388-5484. [PMID: 37455613 DOI: 10.1039/d2cs01018f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The polymorphism of phosphorus-based materials has garnered much research interest, and the variable chemical bonding structures give rise to a variety of micro and nanostructures. Among the different types of materials containing phosphorus, elemental phosphorus materials (EPMs) constitute the foundation for the synthesis of related compounds. EPMs are experiencing a renaissance in the post-graphene era, thanks to recent advancements in the scaling-down of black phosphorus, amorphous red phosphorus, violet phosphorus, and fibrous phosphorus and consequently, diverse classes of low-dimensional sheets, ribbons, and dots of EPMs with intriguing properties have been produced. The nanostructured EPMs featuring tunable bandgaps, moderate carrier mobility, and excellent optical absorption have shown great potential in energy conversion, energy storage, and environmental remediation. It is thus important to have a good understanding of the differences and interrelationships among diverse EPMs, their intrinsic physical and chemical properties, the synthesis of specific structures, and the selection of suitable nanostructures of EPMs for particular applications. In this comprehensive review, we aim to provide an in-depth analysis and discussion of the fundamental physicochemical properties, synthesis, and applications of EPMs in the areas of energy conversion, energy storage, and environmental remediation. Our evaluations are based on recent literature on well-established phosphorus allotropes and theoretical predictions of new EPMs. The objective of this review is to enhance our comprehension of the characteristics of EPMs, keep abreast of recent advances, and provide guidance for future research of EPMs in the fields of chemistry and materials science.
Collapse
Affiliation(s)
- Haijiang Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiahong Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Gengchang Lai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanpeng Dou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Zunbin Duan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Xiaoxiao Feng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Xingchen He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Li Zeng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Jing Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xue-Feng Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Paul K Chu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Liu W, Zheng X, Xu Q. Supercritical CO 2 Directional-Assisted Synthesis of Low-Dimensional Materials for Functional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301097. [PMID: 37093220 DOI: 10.1002/smll.202301097] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Supercritical CO2 (SC CO2 ), as one of the unique fluids that possess fascinating properties of gas and liquid, holds great promise in chemical reactions and fabrication of materials. Building special nanostructures via SC CO2 for functional applications has been the focus of intense research for the past two decades, with facile regulated reaction conditions and a particular reaction field to operate compared to the more widely used solvent systems. In this review, the significance of SC CO2 on fabricating various functional materials including modification of 1D carbon nanotubes, 2D materials, and 2D heterostructures is stated. The fundamental aspects involving building special nanostructures via SC CO2 are explored: how their structure, morphology, and chemical composition be affected by the SC CO2 . Various optimization strategies are outlined to improve their performances, and recent advances are combined to present a coherent understanding of the mechanism of SC CO2 acting on these functional nanostructures. The wide applications of these special nanostructures in catalysis, biosensing, optoelectronics, microelectronics, and energy transformation are discussed. Moreover, the current status of SC CO2 research, the existing scientific issues, and application challenges, as well as the possible future directions to advance this fertile field are proposed in this review.
Collapse
Affiliation(s)
- Wei Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xiaoli Zheng
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Qun Xu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
13
|
Wang A, Ding R, Li Y, Liu M, Yang F, Zhang Y, Fang Q, Yan M, Xie J, Chen Z, Yan Z, He Y, Guo J, Sun X, Liu E. Redox Electrolytes-Assisting Aqueous Zn-Based Batteries by Pseudocapacitive Multiple Perovskite Fluorides Cathode and Charge Storage Mechanisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302333. [PMID: 37166023 DOI: 10.1002/smll.202302333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Aqueous Zn-based batteries (AZBs) have attracted intensive attention. However, to explore advanced cathode materials with in-depth elucidation of their charge storage mechanisms, improve energy storage capacity, and construct novel cell systems remain a great challenge. Herein, a new pseudocapacitive multiple perovskite fluorides (ABF3 ) cathode is designed, represented by KMF-(IV, V, and VI; M = NiCoMnZn/-Mg/-MgFe), and constructed Zn//KMF-(IV, V, and VI) AZBs and their flexible devices. Ex situ tests have revealed a typical bulk phase conversion mechanism of KMF-VI electrode for charge storage in alkaline media dominated by redox-active Ni/Co/Mn species, with transformation of ABF3 nanocrystals into amorphous metal oxide/(oxy)hydroxide nanosheets. By employing single or bipolar redox electrolyte strategies of 20 mm [Fe(CN)6 ]3- or/and 10 mm SO3 2- /Cu[(NH3 )4 ]2+ acting on KMF-(IV, V, and VI) cathode and Zn anode, the AZBs show an improved energy storage owing to additional capacity contribution of redox electrolytes. The as-designed Zn//polyvinyl alcohol (PVA)-KOH-K3 [Fe(CN)6 ]//KMF-(IV, V, and VI) redox gel electrolytes-assisting flexible AZBs (RGE-FAZBs) exhibit remarkable performance under different bending angles because of slight dissolution corrosion of zinc anode compared with liquid electrolytes. Overall, the work demonstrates the novel idea of conversion-type multiple ABF3 cathode for redox electrolytes-assisting AZBs (RE-AZBs) and their flexible systems, showing great significance on electrochemical energy storage.
Collapse
Affiliation(s)
- Ailin Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Rui Ding
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Yi Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Miao Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Feng Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Yuzhen Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Qi Fang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Miao Yan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Jinmei Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Zhiqiang Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Ziyang Yan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Yuming He
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Jian Guo
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Xiujuan Sun
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Enhui Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| |
Collapse
|
14
|
Huang YF, Yang YC, Tseng YY, Tuan HY. Two dimensional MnPSe 3 layer stacking composites with superior storage performance for alkali metal-ion batteries. J Colloid Interface Sci 2023; 635:336-347. [PMID: 36592503 DOI: 10.1016/j.jcis.2022.12.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/07/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Two-dimensional MnPSe3 Van der Waals stacked in an ABC sequence has abundant and low-cost Mn resources, but has yet to exhibit expected performance as an electrode material in battery devices. Here, we report a 2D/2D composite consisting of few layer MnPSe3 nanosheets and graphite through a high energy ball milling method for uses on the anodes alkali metal-ion batteries, including lithium ion battery (LIB) and potassium ion battery (PIB). These unique 2D/2D layer nanostructures, with MnPSe3 layers hierarchically stacked in graphite, can successfully overcome the severe aggregation due to restacking during charge/discharge cycles. Moreover, density functional theory (DFT) calculations show that the band gap of the MnPSe3/graphite hybrid is as low as 0.07 eV, confirming that the combination of MnPSe3 and graphite efficiently reduces the ion migration energy barrier. As a result, MnPSe3/graphite stacking composites achieve a discharge capacity of 488.1 mA h g-1 after 500 cycles at 2000 mA g-1 in LIB, and 236.7 mA h g-1 after 700 cycles at 250 mA g-1 in PIB. Moreover, the analysis of electrochemical, kinetics, reactions mechanism, DFT, and full cell applications were investigated deeply. This work strongly supports the possibility of MnPSe3/graphite hybrid as a promising candidate for alkali ion batteries, and makes important improvements for the application of two-dimensional MPCh3 layer materials in storage systems.
Collapse
Affiliation(s)
- Yan-Fu Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi-Chun Yang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yen-Yang Tseng
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsing-Yu Tuan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
15
|
Facile synthesis of neuronal nickel-cobalt-manganese sulfide for asymmetric supercapacitors with excellent energy density. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
16
|
Xin X, Xu Y, Wuliji H, Sun F, Liu Q, Wang Z, Wei TR, Zhao X, Song X, Gao L. Covalently Assembled Black Phosphorus/Conductive C 3N 4 Hybrid Material for Flexible Supercapacitors Exhibiting a Superlong 30,000 Cycle Durability. ACS NANO 2023; 17:657-667. [PMID: 36542067 DOI: 10.1021/acsnano.2c09970] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Black phosphorus (BP) has been demonstrated as a promising electrode material for supercapacitors. Currently, the main limitation of its practical application is the low electrical conductivity and poor structure stability. Hence, BP-based supercapacitors usually severely suffer from low capacitance and poor cycling stability. Herein, a chemically bridged BP/conductive g-C3N4 (BP/c-C3N4) hybrid is developed via a facile ball-milling method. Covalent P-C bonds are generated through the ball-milling process, effectively preventing the structural distortion of BP induced by ion transport and diffusion. In addition, the overall electrical conductivity is significantly enhanced owing to the sufficient coupling between BP and highly conductive c-C3N4. Moreover, the imbalanced charge distribution around the C atom can induce the generation of a local electric field, facilitating the charge transfer behavior of the electrode material. As a result, the BP/c-C3N4-20:1 flexible supercapacitor (FSC) exhibits an outstanding volumetric capacitance of 42.1 F/cm3 at 0.005 V/s, a high energy density of 5.85 mW h/cm3, and a maximum power density of 15.4 W/cm3. More importantly, the device delivers excellent cycling stability with no capacitive loss after 30,000 cycles.
Collapse
Affiliation(s)
- Xipeng Xin
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Yifeng Xu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Hexige Wuliji
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Fei Sun
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Qingdong Liu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zezhen Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Tian-Ran Wei
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xiaofeng Zhao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xuefeng Song
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
- Shenzhen Research Institute, Shanghai Jiao Tong University, Shenzhen518057, China
| | - Lian Gao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| |
Collapse
|
17
|
An J, Yun S, Wang W, Wang K, Ke T, Liu J, Liu L, Gao Y, Zhang X. Enhanced methane production in anaerobic co-digestion systems with modified black phosphorus. BIORESOURCE TECHNOLOGY 2023; 368:128311. [PMID: 36370940 DOI: 10.1016/j.biortech.2022.128311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Black phosphorus (BP) and BP modified by hydrogen peroxide (MBP) were used as accelerants to enhance CH4 production and CO2 reduction in microbial electrolysis cells (MECs) coupled with anaerobic co-digestion systems (MEC-AcoD). The MEC-AcoD group with a voltage of 0.6 V and 0.03 wt.% of MBP accelerant (MEC0.6MBP0.03) had the largest CH4 yield (242.1 mL/g VS) and the smallest carbon dioxide yield (97.6 mL/g VS) compared with the control group (141.2 mL/g VS, 146.9 mL/g VS). The digestates that used MEC0.6MBP0.03 exhibited superior thermal stability (46.2 %) and total nutrient contents (44.5 g/kg). These improvements may be attributed to the superior electron exchange capacity and physicochemical properties of MBP. Herein, we propose a strategy to understand enhanced CH4 production and CO2 reduction in anaerobic co-digestion and MEC-AcoD systems using MBP accelerants. Notably, combining MBP and MEC could effectively promote anaerobic co-digestion performance.
Collapse
Affiliation(s)
- Jinhang An
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Sining Yun
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China; Qinghai Building and Materials Research Academy Co., Ltd, The Key Lab of Plateau Building and Eco-community in Qinghai, Xining, Qinghai 810000, China.
| | - Wei Wang
- School of Metallurgy Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Kaijun Wang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Teng Ke
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jiayu Liu
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Lijianan Liu
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Yangyang Gao
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Xiaoxue Zhang
- Functional Materials Laboratory (FML), School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| |
Collapse
|
18
|
Wu M, Zheng W, Hu X, Zhan F, He Q, Wang H, Zhang Q, Chen L. Exploring 2D Energy Storage Materials: Advances in Structure, Synthesis, Optimization Strategies, and Applications for Monovalent and Multivalent Metal-Ion Hybrid Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205101. [PMID: 36285775 DOI: 10.1002/smll.202205101] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The design and development of advanced energy storage devices with good energy/power densities and remarkable cycle life has long been a research hotspot. Metal-ion hybrid capacitors (MHCs) are considered as emerging and highly prospective candidates deriving from the integrated merits of metal-ion batteries with high energy density and supercapacitors with excellent power output and cycling stability. The realization of high-performance MHCs needs to conquer the inevitable imbalance in reaction kinetics between anode and cathode with different energy storage mechanisms. Featured by large specific surface area, short ion diffusion distance, ameliorated in-plane charge transport kinetics, and tunable surface and/or interlayer structures, 2D nanomaterials provide a promising platform for manufacturing battery-type electrodes with improved rate capability and capacitor-type electrodes with high capacity. In this article, the fundamental science of 2D nanomaterials and MHCs is first presented in detail, and then the performance optimization strategies from electrodes and electrolytes of MHCs are summarized. Next, the most recent progress in the application of 2D nanomaterials in monovalent and multivalent MHCs is dealt with. Furthermore, the energy storage mechanism of 2D electrode materials is deeply explored by advanced characterization techniques. Finally, the opportunities and challenges of 2D nanomaterials-based MHCs are prospected.
Collapse
Affiliation(s)
- Mengcheng Wu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Wanying Zheng
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Xi Hu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Feiyang Zhan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R., 999077, P. R. China
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
19
|
Chen Z, Yue Z, Wang R, Yang K, Li S. Nanomaterials: A powerful tool for tumor immunotherapy. Front Immunol 2022; 13:979469. [PMID: 36072591 PMCID: PMC9441741 DOI: 10.3389/fimmu.2022.979469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer represents the leading global driver of death and is recognized as a critical obstacle to increasing life expectancy. In recent years, with the development of precision medicine, significant progress has been made in cancer treatment. Among them, various therapies developed with the help of the immune system have succeeded in clinical treatment, recognizing and killing cancer cells by stimulating or enhancing the body’s intrinsic immune system. However, low response rates and serious adverse effects, among others, have limited the use of immunotherapy. It also poses problems such as drug resistance and hyper-progression. Fortunately, thanks to the rapid development of nanotechnology, engineered multifunctional nanomaterials and biomaterials have brought breakthroughs in cancer immunotherapy. Unlike conventional cancer immunotherapy, nanomaterials can be rationally designed to trigger specific tumor-killing effects. Simultaneously, improved infiltration of immune cells into metastatic lesions enhances the efficiency of antigen submission and induces a sustained immune reaction. Such a strategy directly reverses the immunological condition of the primary tumor, arrests metastasis and inhibits tumor recurrence through postoperative immunotherapy. This paper discusses several types of nanoscale biomaterials for cancer immunotherapy, and they activate the immune system through material-specific advantages to provide novel therapeutic strategies. In summary, this article will review the latest advances in tumor immunotherapy based on self-assembled, mesoporous, cell membrane modified, metallic, and hydrogel nanomaterials to explore diverse tumor therapies.
Collapse
Affiliation(s)
- Ziyin Chen
- Clinical Medicine, Harbin Medical University, Harbin, China
| | - Ziqi Yue
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Ronghua Wang
- Department of Outpatient, Dongying People’s Hospital, Dongying, China
| | - Kaiqi Yang
- Clinical Medicine, Harbin Medical University, Harbin, China
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
- *Correspondence: Shenglong Li, ;
| |
Collapse
|
20
|
Li C, Cheng Y, Li D, An Q, Zhang W, Zhang Y, Fu Y. Antitumor Applications of Photothermal Agents and Photothermal Synergistic Therapies. Int J Mol Sci 2022; 23:ijms23147909. [PMID: 35887255 PMCID: PMC9324234 DOI: 10.3390/ijms23147909] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
As a new tumor treatment strategy, photothermal therapy (PTT) has the advantages of accuracy, ease of administration, a high efficiency and low side effects. Photothermal transduction agents (PTAs) are the key factor which play an important role in PTT. The mechanism of PTT is discussed in detail. The photothermal conversion efficiency (PCE) can be improved by increasing the light absorption and reducing the light scattering of photothermal conversion agents. Additionally, non-radiative relaxation path attenuation can also promote energy conversion to obtain a higher value in terms of PCE. The structure and photothermal characteristics of various kinds of PTAs (metal materials, carbon-based nanomaterials, two-dimensional nanomaterials, and organic materials) were compared and analyzed. This paper reviews the antitumor applications of photothermal synergistic therapies, including PTT combined with immunotherapy, chemotherapy, and photodynamic therapy. This review proposes that these PTAs promote the development of photothermal synergistic therapies and have a great potential in the application of tumor treatment.
Collapse
Affiliation(s)
- Chaowei Li
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (C.L.); (Y.C.); (Q.A.); (W.Z.); (Y.Z.)
| | - Yue Cheng
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (C.L.); (Y.C.); (Q.A.); (W.Z.); (Y.Z.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Dawei Li
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (C.L.); (Y.C.); (Q.A.); (W.Z.); (Y.Z.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
- Correspondence: (D.L.); (Y.F.)
| | - Qi An
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (C.L.); (Y.C.); (Q.A.); (W.Z.); (Y.Z.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Wei Zhang
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (C.L.); (Y.C.); (Q.A.); (W.Z.); (Y.Z.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Yu Zhang
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (C.L.); (Y.C.); (Q.A.); (W.Z.); (Y.Z.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
| | - Yijun Fu
- School of Textile and Clothing, Nantong University, Nantong 226019, China; (C.L.); (Y.C.); (Q.A.); (W.Z.); (Y.Z.)
- National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Health, Nantong University, Nantong 226019, China
- Correspondence: (D.L.); (Y.F.)
| |
Collapse
|
21
|
Luo Y, Que W, Bin X, Xia C, Kong B, Gao B, Kong LB. Flexible MXene-Based Composite Films: Synthesis, Modification, and Applications as Electrodes of Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201290. [PMID: 35670492 DOI: 10.1002/smll.202201290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/18/2022] [Indexed: 06/15/2023]
Abstract
MXenes, as a 2D planar structure nanomaterial, were first reported in 2011. Due to their large specific surface area, high ductility, high electrical conductivity, strong hydrophilic surface, and high mechanical flexibility, MXenes have been extensively explored in the development of various functional materials with desired performances. This review is aimed to summarize the current progress in synthesis, modification, and applications of MXene-based composite films as electrode materials of flexible energy storage devices. In the synthesis of MXenes, the evolution and exploration of etchants are emphasized. Furthermore, in order to develop MXene-based composite films, the components used to modify the MXene nanoflakes, including 0D, 1D, and 2D nanomaterials, are summarized, and the perspectives and research direction of such materials are also discussed.
Collapse
Affiliation(s)
- Yijia Luo
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Wenxiu Que
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Xiaoqing Bin
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Chenji Xia
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Bingshan Kong
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Bowen Gao
- School of Mechanical and Construction Engineering, Taishan University, Tai'an, Shandong, 271021, P. R. China
| | - Ling Bing Kong
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, Guangdong, 518118, P. R. China
| |
Collapse
|
22
|
Ma X, Liu J, Zheng C, Huang L, Li W, Cai S, Xiao X. Passivation of black phosphorus nanoflakes embedded in a silica glass matrix affords ambient saturable absorption stability enhancement. APPLIED OPTICS 2022; 61:4638-4647. [PMID: 36256308 DOI: 10.1364/ao.458653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/28/2022] [Indexed: 06/16/2023]
Abstract
Black phosphorus (BP) is a graphene analogue with ultrafast broadband nonlinear optical properties that make it a promising nanomaterial for saturable absorption. However, BP nanoflakes chemically degrade in ambient conditions. We developed air- and photo-stable BP nanoflakes via incorporation in inorganic-organic hybrid matrices. This realized passivation and materialization through a sol-gel method that produced high-quality, transparent bulk materials. Saturable absorption parameters of the passivated BP were maintained after five months in ambient storage and after 8000 300 µJ nanosecond laser shots. The nonlinear absorption coefficient was still 62% after 12 months in open air, which was higher than that for non-passivated BP after three days. The stability was attributed to dense silica-gel glasses that enveloped the BP, essentially eliminating oxygen and water penetration. The simplicity of this approach may stimulate potential applications for environmentally sensitive high-performance solid-state devices.
Collapse
|
23
|
Zou J, Zou Y, Wang H, Wang W, Wu P, Arramel A, Jiang J, Li X. Tailoring the electronic acceptor-donor heterointerface between black phosphorus and Co3O4 for boosting oxygen bifunctional electrocatalysis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Chen F, Tang Q, Ma T, Zhu B, Wang L, He C, Luo X, Cao S, Ma L, Cheng C. Structures, properties, and challenges of emerging
2D
materials in bioelectronics and biosensors. INFOMAT 2022. [DOI: 10.1002/inf2.12299] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Qing Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Bihui Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Liyun Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| | - Sujiao Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu China
| | - Lang Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
- National Clinical Research Center for Geriatrics, West China Hospital Sichuan University Chengdu China
- Department of Chemistry and Biochemistry Freie Universität Berlin Berlin Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Med‐X Center for Materials Sichuan University Chengdu China
| |
Collapse
|
25
|
Benabdallah I, Sibari A, El Masaoudi H, Azouzi W, Benaissa M. Quantum confinement and Effective masses dependence in black phosphorus quantum dots and phosphorene. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Yuan D, Dou Y, Wu Z, Tian Y, Ye KH, Lin Z, Dou SX, Zhang S. Atomically Thin Materials for Next-Generation Rechargeable Batteries. Chem Rev 2021; 122:957-999. [PMID: 34709781 DOI: 10.1021/acs.chemrev.1c00636] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Atomically thin materials (ATMs) with thicknesses in the atomic scale (typically <5 nm) offer inherent advantages of large specific surface areas, proper crystal lattice distortion, abundant surface dangling bonds, and strong in-plane chemical bonds, making them ideal 2D platforms to construct high-performance electrode materials for rechargeable metal-ion batteries, metal-sulfur batteries, and metal-air batteries. This work reviews the synthesis and electronic property tuning of state-of-the-art ATMs, including graphene and graphene derivatives (GE/GO/rGO), graphitic carbon nitride (g-C3N4), phosphorene, covalent organic frameworks (COFs), layered transition metal dichalcogenides (TMDs), transition metal carbides, carbonitrides, and nitrides (MXenes), transition metal oxides (TMOs), and metal-organic frameworks (MOFs) for constructing next-generation high-energy-density and high-power-density rechargeable batteries to meet the needs of the rapid developments in portable electronics, electric vehicles, and smart electricity grids. We also present our viewpoints on future challenges and opportunities of constructing efficient ATMs for next-generation rechargeable batteries.
Collapse
Affiliation(s)
- Ding Yuan
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| | - Yuhai Dou
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia.,Shandong Institute of Advanced Technology, Jinan 250100, China
| | - Zhenzhen Wu
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| | - Yuhui Tian
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia.,Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou, Henan 450002, China
| | - Kai-Hang Ye
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhan Lin
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong 2500, Australia
| | - Shanqing Zhang
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Gold Coast 4222, Australia
| |
Collapse
|
27
|
Li X, Li J, Zhuo W, Li Z, Ma L, Ji Z, Pan L, Mai W. In Situ Monitoring the Potassium-Ion Storage Enhancement in Iron Selenide with Ether-Based Electrolyte. NANO-MICRO LETTERS 2021; 13:179. [PMID: 34406514 PMCID: PMC8374025 DOI: 10.1007/s40820-021-00708-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/25/2021] [Indexed: 05/19/2023]
Abstract
As one of the promising anode materials, iron selenide has received much attention for potassium-ion batteries (KIBs). Nevertheless, volume expansion and sluggish kinetics of iron selenide result in the poor reversibility and stability during potassiation-depotassiation process. In this work, we develop iron selenide composite matching ether-based electrolyte for KIBs, which presents a reversible specific capacity of 356 mAh g-1 at 200 mA g-1 after 75 cycles. According to the measurement of mechanical properties, it is found that iron selenide composite also exhibits robust and elastic solid electrolyte interphase layer in ether-based electrolyte, contributing to the improvement in reversibility and stability for KIBs. To further investigate the electrochemical enhancement mechanism of ether-based electrolyte in KIBs, we also utilize in situ visualization technique to monitor the potassiation-depotassiation process. For comparison, iron selenide composite matching carbonate-based electrolyte presents vast morphology change during potassiation-depotassiation process. When changing to ether-based electrolyte, a few minor morphology changes can be observed. This phenomenon indicates an occurrence of homogeneous electrochemical reaction in ether-based electrolyte, which results in a stable performance for potassium-ion (K-ion) storage. We believe that our work will provide a new perspective to visually monitor the potassium-ion storage process and guide the improvement in electrode material performance.
Collapse
Affiliation(s)
- Xiaodan Li
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China
| | - Jinliang Li
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China.
| | - Wenchen Zhuo
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China
| | - Zhibin Li
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China
| | - Liang Ma
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China
| | - Zhong Ji
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Wenjie Mai
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China.
| |
Collapse
|
28
|
Recent applications of black phosphorus and its related composites in electrochemistry and bioelectrochemistry: A mini review. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
29
|
Sun P, Ma L, Zhou W, Qiu M, Wang Z, Chao D, Mai W. Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite-Free Zn Ion Batteries Achieved by a Low-Cost Glucose Additive. Angew Chem Int Ed Engl 2021; 60:18247-18255. [PMID: 34036748 DOI: 10.1002/anie.202105756] [Citation(s) in RCA: 233] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Indexed: 11/11/2022]
Abstract
Dendrite growth and by-products in Zn metal aqueous batteries have impeded their development as promising energy storage devices. We utilize a low-cost additive, glucose, to modulate the typical ZnSO4 electrolyte system for improving reversible plating/stripping on Zn anode for high-performance Zn ion batteries (ZIBs). Combing experimental characterizations and theoretical calculations, we show that the glucose in ZnSO4 aqueous environment can simultaneously modulate solvation structure of Zn2+ and Zn anode-electrolyte interface. The electrolyte engineering can alternate one H2 O molecule from the primary Zn2+ -6H2 O solvation shell and restraining side reactions due to the decomposition of active water. Concomitantly, glucose molecules are inclined to absorb on the surface of Zn anode, suppressing the random growth of Zn dendrite. As a proof of concept, a symmetric cell and Zn-MnO2 full cell with glucose electrolyte achieve boosted stability than that with pure ZnSO4 electrolyte.
Collapse
Affiliation(s)
- Peng Sun
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Liang Ma
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Wanhai Zhou
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Meijia Qiu
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,MOE Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zilong Wang
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Wenjie Mai
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
30
|
Sun P, Ma L, Zhou W, Qiu M, Wang Z, Chao D, Mai W. Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite‐Free Zn Ion Batteries Achieved by a Low‐Cost Glucose Additive. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105756] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peng Sun
- Siyuan Laboratory Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials Department of Physics Jinan University Guangzhou Guangdong 510632 P. R. China
| | - Liang Ma
- Siyuan Laboratory Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials Department of Physics Jinan University Guangzhou Guangdong 510632 P. R. China
| | - Wanhai Zhou
- Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 P. R. China
| | - Meijia Qiu
- Siyuan Laboratory Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials Department of Physics Jinan University Guangzhou Guangdong 510632 P. R. China
- MOE Laboratory of Bioinorganic and Synthetic Chemistry The Key Lab of Low-Carbon Chemistry and Energy Conservation of Guangdong Province School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Zilong Wang
- Siyuan Laboratory Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials Department of Physics Jinan University Guangzhou Guangdong 510632 P. R. China
| | - Dongliang Chao
- Laboratory of Advanced Materials Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 P. R. China
| | - Wenjie Mai
- Siyuan Laboratory Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials Department of Physics Jinan University Guangzhou Guangdong 510632 P. R. China
| |
Collapse
|
31
|
Addressing the Theoretical and Experimental Aspects of Low-Dimensional-Materials-Based FET Immunosensors: A Review. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electrochemical immunosensors (EI) have been widely investigated in the last several years. Among them, immunosensors based on low-dimensional materials (LDM) stand out, as they could provide a substantial gain in fabricating point-of-care devices, paving the way for fast, precise, and sensitive diagnosis of numerous severe illnesses. The high surface area available in LDMs makes it possible to immobilize a high density of bioreceptors, improving the sensitivity in biorecognition events between antibodies and antigens. If on the one hand, many works present promising results in using LDMs as a sensing material in EIs, on the other hand, very few of them discuss the fundamental interactions involved at the interfaces. Understanding the fundamental Chemistry and Physics of the interactions between the surface of LDMs and the bioreceptors, and how the operating conditions and biorecognition events affect those interactions, is vital when proposing new devices. Here, we present a review of recent works on EIs, focusing on devices that use LDMs (1D and 2D) as the sensing substrate. To do so, we highlight both experimental and theoretical aspects, bringing to light the fundamental aspects of the main interactions occurring at the interfaces and the operating mechanisms in which the detections are based.
Collapse
|
32
|
Pandey A, Nikam AN, Padya BS, Kulkarni S, Fernandes G, Shreya AB, García MC, Caro C, Páez-Muñoz JM, Dhas N, García-Martín ML, Mehta T, Mutalik S. Surface architectured black phosphorous nanoconstructs based smart and versatile platform for cancer theranostics. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
Ma L, Li X, Li Z, Zhang Y, Ji Z, Wang H, Mai W, Li J, Pan L. Bismuth oxychloride anchoring on graphene nanosheets as anode with a high relative energy density for potassium ion battery. J Colloid Interface Sci 2021; 599:857-862. [PMID: 33989936 DOI: 10.1016/j.jcis.2021.04.140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
In this work, we developed bismuth oxychloride anchoring on graphene nanosheets (BiOCl/G) composite via a simple one-step hydrothermal process for KIBs' anode, which delivers a high reversible specific capacity of 251 mAh g-1 at 50 mA g-1 after 50 cycles. Meanwhile, our BiOCl/G composite also exhibits a low voltage plateau during potassiation-depotassiation process, and such low voltage plateau in anode is helpful to improve the energy density of the full battery. In addition, we also provide the energy changes for migration of K-ion of our composite according to the density functional theory calculation and the result shows that the introduction of graphene in BiOCl can reduce the adsorption energy variation, which is in favor of K-ion intercalation process. In consideration of low potential plateau of our composite, we also introduce a new evaluation method, relative energy density (ER), which not only includes the specific capacity, but also combines the potential plateau of the anode materials during potassiation-depotassiation process. According to the calculation, our BiOCl/G composite obtain an ultra-high ER of 541 Wh kg-1 at 50 mA g-1 after 50 cycles with a relative energy conversion efficiency of 81%.
Collapse
Affiliation(s)
- Liang Ma
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiaodan Li
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Zhibin Li
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yajuan Zhang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Zhong Ji
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Hao Wang
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060 China
| | - Wenjie Mai
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jinliang Li
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
34
|
Ma L, Li J, Li Z, Ji Y, Mai W, Wang H. Ultra-Stable Potassium Ion Storage of Nitrogen-Doped Carbon Nanofiber Derived from Bacterial Cellulose. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1130. [PMID: 33925495 PMCID: PMC8145622 DOI: 10.3390/nano11051130] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 01/26/2023]
Abstract
As a promising energy storage system, potassium (K) ion batteries (KIBs) have received extensive attention due to the abundance of potassium resource in the Earth's crust and the similar properties of K to Li. However, the electrode always presents poor stability for K-ion storage due to the large radius of K-ions. In our work, we develop a nitrogen-doped carbon nanofiber (N-CNF) derived from bacterial cellulose by a simple pyrolysis process, which allows ultra-stable K-ion storage. Even at a large current density of 1 A g-1, our electrode exhibits a reversible specific capacity of 81 mAh g-1 after 3000 cycles for KIBs, with a capacity retention ratio of 71%. To investigate the electrochemical enhancement performance of our N-CNF, we provide the calculation results according to density functional theory, demonstrating that nitrogen doping in carbon is in favor of the K-ion adsorption during the potassiation process. This behavior will contribute to the enhancement of electrochemical performance for KIBs. In addition, our electrode exhibits a low voltage plateau during the potassiation-depotassiation process. To further evaluate this performance, we calculate the "relative energy density" for comparison. The results illustrate that our electrode presents a high "relative energy density", indicating that our N-CNF is a promising anode material for KIBs.
Collapse
Affiliation(s)
- Liang Ma
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China;
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou 510632, China; (J.L.); (Z.L.); (Y.J.); (W.M.)
| | - Jinliang Li
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou 510632, China; (J.L.); (Z.L.); (Y.J.); (W.M.)
| | - Zhibin Li
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou 510632, China; (J.L.); (Z.L.); (Y.J.); (W.M.)
| | - Yingying Ji
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou 510632, China; (J.L.); (Z.L.); (Y.J.); (W.M.)
| | - Wenjie Mai
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Department of Physics, Jinan University, Guangzhou 510632, China; (J.L.); (Z.L.); (Y.J.); (W.M.)
| | - Hao Wang
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
35
|
Princy Maria J, Nagarajan V, Chandiramouli R. Chemosensing nature of black phosphorene nanotube towards C14H9Cl5 and C10H5Cl7 molecules – A first-principles insight. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2020.113109] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Xu M, Feng Y, Chen B, Meng R, Xia M, Gu F, Yang D, Zhang C, Yang J. Armoring Black Phosphorus Anode with Stable Metal-Organic-Framework Layer for Hybrid K-Ion Capacitors. NANO-MICRO LETTERS 2021; 13:42. [PMID: 34138223 PMCID: PMC8187701 DOI: 10.1007/s40820-020-00570-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/19/2020] [Indexed: 05/28/2023]
Abstract
Potassium-ion capacitors (KICs) are promising for sustainable and eco-friendly energy storage technologies, yet their slow reaction kinetics and poor cyclability induced by large K-ion size are a major obstacle toward practical applications. Herein, by employing black phosphorus nanosheets (BPNSs) as a typical high-capacity anode material, we report that BPNS anodes armored with an ultrathin oriented-grown metal-organic-framework (MOF) interphase layer (BPNS@MOF) exhibit regulated potassium storage behavior for high-performance KICs. The MOF interphase layers as protective layer with ordered pores and high chemical/mechanical stability facilitate K ion diffusion and accommodate the volume change of electrode, beneficial for improved reaction kinetics and enhanced cyclability, as evidenced by substantial characterizations, kinetics analysis and DFT calculations. Consequently, the BPNS@MOF electrode as KIC anodes exhibits outstanding cycle performance outperforming most of the reported state-of-art KICs so far.
Collapse
Affiliation(s)
- Mengzhu Xu
- Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yutong Feng
- Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Bingjie Chen
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Ruijin Meng
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Mengting Xia
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Feng Gu
- Institute for Process Modelling and Optimization, Jiangsu Industrial Technology Research Institute, SIP, 388 Ruoshui Road, Suzhou, Jiangsu, People's Republic of China
| | - Donglei Yang
- Institute of Molecular Medicine School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Chi Zhang
- Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China.
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| | - Jinhu Yang
- Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China.
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|