1
|
Wang S, Pang X, Huang D, Zhang M, Hu S, Huang Y, Zheng F, Wang H, Li Q, Pan Q. Construction of Co 9S 8@C-MoS 2 heterostructure for fast charging and superior long-term cycling performance of sodium ion batteries. J Colloid Interface Sci 2024; 680:398-406. [PMID: 39520942 DOI: 10.1016/j.jcis.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/27/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Cobalt sulfide (Co9S8) is a promising anode material for sodium-ion batteries (SIBs) due to its high theoretical capacity, cost-effectiveness, and environmental friendliness. Unfortunately, the inevitable structural deterioration induced by the huge volume changes during the discharge/charge cycles leads to poor cycle performance and rate capability when evaluated as the anode material for SIB. Herein, we designed a Co9S8@C-MoS2 heterostructure with abundant heterointerface and hollow structure. In the designed hybrid architecture, the self-supporting hollow carbon scaffold can provide sufficient space for volume expansion caused by Na+ insertion, and the abundant heterointerface can accelerate ion-diffusion and electron transfer kinetics and dissipate the internal stress induced by volume expansion during the sodiation/desodiation process. As expected, the Co9S8@C-MoS2 composite shows excellent sodium storage performance. Specifically, the Co9S8@C-MoS2 composite displays excellent long-term cycling life (a high capacity of 429.4 mAh g-1 is maintained after 1500 cycles at 5.0 A/g), and superior rate performance (412.6 mAh g-1 is achieved even at 10.0 A/g).
Collapse
Affiliation(s)
- Shunchao Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xin Pang
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Dequan Huang
- College of Automotive Engineering, Guilin University of Aerospace Technology, Guilin, Guangxi 541004, China.
| | - Man Zhang
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Sijiang Hu
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Youguo Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Fenghua Zheng
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; College of Automotive Engineering, Guilin University of Aerospace Technology, Guilin, Guangxi 541004, China
| | - Hongqiang Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Qingyu Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qichang Pan
- Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
2
|
Zhang X, Zhang X, Liu D, Wang L, Wen G, Wang Y, Huang X. Advances in Carbon Microsphere-Based Nanomaterials for Efficient Electromagnetic Wave Absorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18857-18881. [PMID: 39194215 DOI: 10.1021/acs.langmuir.4c02829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Carbon microspheres have indeed shown great promise as effective materials for absorbing electromagnetic waves, particularly in microwave applications. Their unique properties, such as high surface area, porosity, and electronic characteristics, make them ideal candidates for addressing the growing concerns around electromagnetic pollution from electronic devices. By leveraging the properties of these materials, we can work toward creating more efficient and sustainable electromagnetic wave absorption technologies. Recent efforts have focused on synthesizing and investigating carbon microsphere-based electromagnetic wave-absorbing nanomaterials with the ambition of achieving the desired attributes of being thin, light, wide, and robust. This Review first delves into the detailed mechanism of electromagnetic wave absorption, followed by an elucidation of the preparation methods for carbon microsphere-based nanomaterials. Furthermore, it systematically outlines the common methods and strategies employed to improve the microwave absorption capabilities of carbon microspheres, including chemical vapor deposition, emulsion polymerization, hydrothermal methods, and template methods. Lastly, it outlines the challenges encountered by carbon microsphere-based electromagnetic wave absorption nanomaterials and outlines their prospects, mainly morphology change, component hybridization, and elemental doping. This Review aims to provide valuable insights into the creation of carbon microsphere nanomaterials with excellent electromagnetic wave absorption properties.
Collapse
Affiliation(s)
- Xuji Zhang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Xueqian Zhang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Dongdong Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Weihai 264209, China
| | - Longxin Wang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Guangwu Wen
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yishan Wang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Xiaoxiao Huang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
3
|
Bose S, Kumar M. Comparative evaluation of α-Bi 2O 3/CoFe 2O 4 and ZnO/CoFe 2O 4 heterojunction nanocomposites for microwave induced catalytic degradation of tetracycline. CHEMOSPHERE 2024; 364:143071. [PMID: 39128776 DOI: 10.1016/j.chemosphere.2024.143071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Two microwave (MW) responsive heterojunction nanocomposite catalysts, i.e., α-Bi2O3/CoFe2O4 (BO/CFO) and ZnO/CoFe2O4 (ZO/CFO), with weight% ratio of 70/30, 50/50, 30/70 were synthesized by sequential thermal decomposition and co-precipitation methods, and used for the degradation of tetracycline (TC) under MW irradiation. The formation of desired catalysts was confirmed through the characterization results of XRD, FT-IR, SEM, VSM, UV-DRS, XPS, BET, etc. Using batch MW experiments, the catalyst dose, pH, initial TC concentration, reaction temperature, and MW power were optimized for TC removal. Under the following reaction conditions: catalyst dose ∼1 g/L, initial TC concentration ∼1 mg/L, temperature ∼90 °C, MW ∼450 W, BO/CFO, and ZO/CFO showed ∼97.55% and 88.23% TC degradation, respectively, after 5 min. The difference in the catalytic response against TC degradation indicated the difference in reflective loss (RL) between these two catalysts. The presence of other competitive anions has affected the removal efficiency of TC due to the scavenging effect. The radical trapping study revealed the significant contribution of TC degradation by hydroxyl radicals in the case of ZO/CFO, whereas for BO/CFO, superoxide (●O2-) and hydroxyl radicals (●OH) both played influential roles. The Z-scheme heterojunction of BO/CFO allowed the formation of ●O2- but the same was inhibited in type-II heterojunction of ZO/CFO due to the valance band position. The dielectric loss, magnetic loss, interfacial polarization, and high electrical conductivity, 'hotspots' were produced over the catalyst surface alongside electron-hole separation at heterojunctions, which were responsible for the generation of reactive oxygen species. In addition, Co3+/Co2+ and Fe3+/Fe2+ redox cycles have promoted ●O2- and sulfate radical production during persulfate application. Among the two MW responsive catalysts, BO/CFO could be a potential material for rapidly destroying emerging organic pollutants from wastewater without applying other oxidative chemicals under MW irradiation.
Collapse
Affiliation(s)
- Saptarshi Bose
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - Mathava Kumar
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India.
| |
Collapse
|
4
|
Xu J, Li B, Ma Z, Zhang X, Zhu C, Yan F, Yang P, Chen Y. Multifunctional Film Assembled from N-Doped Carbon Nanofiber with Co-N 4-O Single Atoms for Highly Efficient Electromagnetic Energy Attenuation. NANO-MICRO LETTERS 2024; 16:240. [PMID: 38980475 PMCID: PMC11233488 DOI: 10.1007/s40820-024-01440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 07/10/2024]
Abstract
Single-atom materials have demonstrated attractive physicochemical characteristics. However, understanding the relationships between the coordination environment of single atoms and their properties at the atomic level remains a considerable challenge. Herein, a facile water-assisted carbonization approach is developed to fabricate well-defined asymmetrically coordinated Co-N4-O sites on biomass-derived carbon nanofiber (Co-N4-O/NCF) for electromagnetic wave (EMW) absorption. In such nanofiber, one atomically dispersed Co site is coordinated with four N atoms in the graphene basal plane and one oxygen atom in the axial direction. In-depth experimental and theoretical studies reveal that the axial Co-O coordination breaks the charge distribution symmetry in the planar porphyrin-like Co-N4 structure, leading to significantly enhanced dielectric polarization loss relevant to the planar Co-N4 sites. Importantly, the film based on Co-N4-O/NCF exhibits light weight, flexibility, excellent mechanical properties, great thermal insulating feature, and excellent EMW absorption with a reflection loss of - 45.82 dB along with an effective absorption bandwidth of 4.8 GHz. The findings of this work offer insight into the relationships between the single-atom coordination environment and the dielectric performance, and the proposed strategy can be extended toward the engineering of asymmetrically coordinated single atoms for various applications.
Collapse
Affiliation(s)
- Jia Xu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Bei Li
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Zheng Ma
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Xiao Zhang
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Chunling Zhu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
| | - Feng Yan
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
| | - Piaoping Yang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Yujin Chen
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
| |
Collapse
|
5
|
Wang X, Ou P, Zheng Q, Wang L, Jiang W. Embedding Multiple Magnetic Components in Carbon Nanostructures via Metal-Oxo Cluster Precursor for High-Efficiency Low-/Middle-Frequency Electromagnetic Wave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307473. [PMID: 38009727 DOI: 10.1002/smll.202307473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/30/2023] [Indexed: 11/29/2023]
Abstract
With the advent of wireless technology, magnetic-carbon composites with strong electromagnetic wave (EMW) absorption capability in low-/middle-frequency range are highly desirable. However, it remains challenging for rational construction of such absorbers bearing multiple magnetic components that show uniform distribution and favorable magnetic loss. Herein, a facile metal-oxo cluster (MOC) precursor strategy is presented to produce high-efficiency magnetic carbon composites. Nanosized MOC Fe15 shelled with organic ligands is employed as a novel magnetic precursor, thus allowing in situ formation and uniform deposition of multicomponent magnetic Fe/Fe3O4@Fe3C and Fe/Fe3O4 nanoparticles on graphene oxides (GOs) and carbon nanotubes (CNTs), respectively. Owing to the good dispersity and efficient magnetic-dielectric synergy, quaternary Fe/Fe3O4@Fe3C-GO exhibits strong low-frequency absorption with RLmin of -53.5 dB at C-band and absorption bandwidth covering 3.44 GHz, while ultrahigh RLmin of -73.2 dB is achieved at X-band for ternary Fe/Fe3O4-CNT. The high performance for quaternary and ternary composites is further supported by the optimal specific EMW absorption performance (-15.7 dB mm-1 and -31.8 dB mm-1) and radar cross-section reduction (21.72 dB m2 and 34.37 dB m2). This work provides a new avenue for developing lightweight low-/middle-frequency EMW absorbers, and will inspire the investigation of more advanced EMW absorbers with multiple magnetic components and regulated microstructures.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Pinxi Ou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Qi Zheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, P. R. China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620, P. R. China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
- Institute of Functional Materials, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
6
|
He Z, Xu H, Shi L, Ren X, Kong J, Liu P. Hierarchical Co 2 P/CoS 2 @C@MoS 2 Composites with Hollow Cavity and Multiple Phases Toward Wideband Electromagnetic Wave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306253. [PMID: 37771205 DOI: 10.1002/smll.202306253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Indexed: 09/30/2023]
Abstract
The synergistic effect of hollow cavities and multiple hetero-interfaces displays huge advantages in achieving lightweight and high-efficient electromagnetic wave absorption, but still confronts huge challenges. Herein, hierarchical Co2 P/CoS2 @C@MoS2 composites via the self-sacrificed strategy and a subsequent hydrothermal method have been successfully synthesized. Specifically, ZIF-67 cores first act as the structural template to form core-shell ZIF-67@poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol) (ZIF-67@PZS) composites, which are converted into hollow Co2 P@C shells with micro-mesoporous characteristics because of the gradient structural stabilities and preferred coordination ability. The deposition of hierarchical MoS2 results in phase transition (Co2 P→Co2 P/CoS2 ), yielding the formation of hierarchical Co2 P/CoS2 @C@MoS2 composites with hollow cavities and multiple hetero-interfaces. Benefiting from the cooperative advantages of hollow structure, extra N,P,S-doped sources, lattice defects/vacancies, diverse incoherent interfaces, and hierarchical configurations, the composites deliver superior electromagnetic wave capability (-56.6 dB) and wideband absorption bandwidth (8.96 GHz) with 20 wt.% filler loading. This study provides a reliable and facile strategy for the precise construction of superior electromagnetic wave absorbents with efficient absorption attenuation.
Collapse
Affiliation(s)
- Zizhuang He
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Hanxiao Xu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Lingzi Shi
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Xiangru Ren
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Jie Kong
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Panbo Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| |
Collapse
|
7
|
Liu ZX, Yang HB, Han ZM, Sun WB, Ge XX, Huang JM, Yang KP, Li DH, Guan QF, Yu SH. A Bioinspired Gradient Design Strategy for Cellulose-Based Electromagnetic Wave Absorbing Structural Materials. NANO LETTERS 2024; 24:881-889. [PMID: 38198246 DOI: 10.1021/acs.nanolett.3c03989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cellulose nanofiber (CNF) possesses excellent intrinsic properties, and many CNF-based high-performance structural and functional materials have been developed recently. However, the coordination of the mechanical properties and functionality is still a considerable challenge. Here, a CNF-based structural material is developed by a bioinspired gradient structure design using hollow magnetite nanoparticles and the phosphorylation-modified CNF as building blocks, which simultaneously achieves a superior mechanical performance and electromagnetic wave absorption (EMA) ability. Benefiting from the gradient design, the flexural strength of the structural material reached ∼205 MPa. Meanwhile, gradient design improves impedance matching, contributing to the high EMA ability (-59.5 dB) and wide effective absorption width (5.20 GHz). Besides, a low coefficient of thermal expansion and stable storage modulus was demonstrated as the temperature changes. The excellent mechanical, thermal, and EMA performance exhibited great potential for application in stealth equipment and electromagnetic interference protecting electronic packaging materials.
Collapse
Affiliation(s)
- Zhao-Xiang Liu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Huai-Bin Yang
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zi-Meng Han
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Bin Sun
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xing-Xiang Ge
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jun-Ming Huang
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Kun-Peng Yang
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - De-Han Li
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Qing-Fang Guan
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Institute of Innovative Materials, Department of Materials Science and Engineering, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
8
|
Qian Y, Lv X, Lv H, Wu Z, Zhang H, Liu M, Yang L, Zhao B, Luo K, Zhang J, Che R. Controllable Synthesis of Highly Symmetrical Streamlined Structure for Wideband Microwave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305625. [PMID: 37658509 DOI: 10.1002/smll.202305625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/18/2023] [Indexed: 09/03/2023]
Abstract
Highly symmetrical and streamlined nanostructures possessing unique electron scattering, electron-phonon coupling, and electron confinement characteristics have attracted a lot of attention. However, the controllable synthesis of such a nanostructure with regulated shapes and sizes remains a huge challenge. In this work, a peanut-like MnO@C structure, assembled by two core-shell nanosphere is developed via a facile hydrogen ion concentration regulation strategy. Off-axis electron holography technique, charge reconstruction, and COMSOL Multiphysics simulation jointly reveal the unique electronic distribution and confirm its higher dielectric sensitive ability, which can be used as microwave absorption to deal with currently electromagnetic pollution. The results reveal that the peanut-like core-shell MnO@C exhibits great wideband properties with effective absorption bandwidth of 6.6 GHz, covering 10.8-17.2 GHz band. Inspired by this structure-induced sensitively dielectric behavior, promoting the development of symmetrical and streamlined nanostructure would be attractive for many other promising applications in the future, such as piezoelectric material and supercapacitor and electromagnetic shielding.
Collapse
Affiliation(s)
- Yuetong Qian
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiaowei Lv
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Hualiang Lv
- Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Zhengchen Wu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Huibin Zhang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
| | - Min Liu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Liting Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Biao Zhao
- School of Microelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Kaicheng Luo
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Jincang Zhang
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
- Zhejiang Laboratory, Hangzhou, 311100, P. R. China
| | - Renchao Che
- Materials Genome Institute, Shanghai University, Shanghai, 200444, P. R. China
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
- Zhejiang Laboratory, Hangzhou, 311100, P. R. China
| |
Collapse
|
9
|
Wang J, Zhang S, Liu Z, Ning T, Yan J, Dai K, Zhai C, Yun J. Graphene-like structure of bio-carbon with CoFe Prussian blue derivative composites for enhanced microwave absorption. J Colloid Interface Sci 2023; 652:2029-2041. [PMID: 37696057 DOI: 10.1016/j.jcis.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
Traditional carbon materials such as graphene are often applied in the field of electromagnetic wave (EMW) absorption but they have unbalanced impedance matching and high conductivity. Bio-carbon with graphene-like structure derived from apples has many advantages over graphene: it can be prepared in large quantities and the abundant heteroatoms present in the lattice can provide many polarization phenomena. Herein, Prussian blue analogue (PBA) as a source of magnetic component was combined with bio-carbon or reduced graphene oxide (rGO) to study the EMW absorption properties. The fabricated BC/CFC-12-7 displayed performance with a minimum reflection loss (RLmin) of -72.57 dB and a wide effective absorption bandwidth (EAB) of 5.25 GHz with an ultra-thin and nearly equal matching thickness at 1.61 mm. The results show that the good EMW absorption property of bio-carbon composites comes from good conduction loss, large relaxation polarization loss especially from pyridinic-N, and better impedance matching. The optimized radar cross section is found to be -33.55 dB m2 in the far-field condition using CST. This work explored the advantages of bio-carbon as a novel EMW absorbing material compared with graphene and provided ideas for realizing high-performance EMW absorbing materials in the future.
Collapse
Affiliation(s)
- Jiahao Wang
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China
| | - Simin Zhang
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China
| | - Zhaolin Liu
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China
| | - Tengge Ning
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China
| | - Junfeng Yan
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China.
| | - Kun Dai
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China
| | - Chunxue Zhai
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China
| | - Jiangni Yun
- School of Information Science and Technology, Northwest University, Xi'an 710127, PR China; Department of Physics, McGill University, Montreal, Quebec H3A 2T8, Canada.
| |
Collapse
|
10
|
Kim YH, Jeong H, Won BR, Jeon H, Park CH, Park D, Kim Y, Lee S, Myung JH. Nanoparticle Exsolution on Perovskite Oxides: Insights into Mechanism, Characteristics and Novel Strategies. NANO-MICRO LETTERS 2023; 16:33. [PMID: 38015283 PMCID: PMC10684483 DOI: 10.1007/s40820-023-01258-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023]
Abstract
Supported nanoparticles have attracted considerable attention as a promising catalyst for achieving unique properties in numerous applications, including fuel cells, chemical conversion, and batteries. Nanocatalysts demonstrate high activity by expanding the number of active sites, but they also intensify deactivation issues, such as agglomeration and poisoning, simultaneously. Exsolution for bottom-up synthesis of supported nanoparticles has emerged as a breakthrough technique to overcome limitations associated with conventional nanomaterials. Nanoparticles are uniformly exsolved from perovskite oxide supports and socketed into the oxide support by a one-step reduction process. Their uniformity and stability, resulting from the socketed structure, play a crucial role in the development of novel nanocatalysts. Recently, tremendous research efforts have been dedicated to further controlling exsolution particles. To effectively address exsolution at a more precise level, understanding the underlying mechanism is essential. This review presents a comprehensive overview of the exsolution mechanism, with a focus on its driving force, processes, properties, and synergetic strategies, as well as new pathways for optimizing nanocatalysts in diverse applications.
Collapse
Affiliation(s)
- Yo Han Kim
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hyeongwon Jeong
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Bo-Ram Won
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hyejin Jeon
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Chan-Ho Park
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Dayoung Park
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yeeun Kim
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Somi Lee
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jae-Ha Myung
- Department of Materials Science and Engineering, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
11
|
He P, Ma W, Xu J, Wang Y, Cui ZK, Wei J, Zuo P, Liu X, Zhuang Q. Hierarchical and Orderly Surface Conductive Networks in Yolk-Shell Fe 3 O 4 @C@Co/N-Doped C Microspheres for Enhanced Microwave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302961. [PMID: 37264718 DOI: 10.1002/smll.202302961] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/17/2023] [Indexed: 06/03/2023]
Abstract
Constructing the adjustable surface conductive networks is an innovation that can achieve a balance between enhanced attenuation and impedance mismatch according to the microwave absorption mechanism. However, the traditional design strategies remain significant challenges in terms of rational selection and controlled growth of conductive components. Herein, a hierarchical construction strategy and quantitative construction technique are employed to introduce conductive metal-organic frameworks (MOFs) derivatives in the classic yolk-shell structure composed of electromagnetic components and the cavity for remarkable optimized performance. Specifically, the surface conductive networks obtained by carbonized ZIF-67 quantitative construction, together with the Fe3 O4 magnetic core and dielectric carbon layer linked by the cavity, achieve the cooperative enhancement of impedance matching optimization and synergistic attenuation in the Fe3 O4 @C@Co/N-Doped C (FCCNC) absorber. This interesting design is further verified by experimental results and simulation calculations. The products FCCNC-2 yield a distinguished minimum reflection loss of -66.39 dB and an exceptional effective absorption bandwidth of 6.49 GHz, indicating that moderate conduction excited via hierarchical and quantitative design can maximize the absorption capability. Furthermore, the proposed versatile methodology of surface assembly paves a new avenue to maximize beneficial conduction effect and manipulate microwave attenuation in MOFs derivatives.
Collapse
Affiliation(s)
- Peng He
- Key Laboratory of Advanced Polymer Materials of Shanghai, School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wenjun Ma
- Key Laboratory of Advanced Polymer Materials of Shanghai, School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jian Xu
- Key Laboratory of Advanced Polymer Materials of Shanghai, School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yizhe Wang
- Key Laboratory of Advanced Polymer Materials of Shanghai, School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhong-Kai Cui
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jie Wei
- Key Laboratory of Advanced Polymer Materials of Shanghai, School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Peiyuan Zuo
- Key Laboratory of Advanced Polymer Materials of Shanghai, School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xiaoyun Liu
- Key Laboratory of Advanced Polymer Materials of Shanghai, School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qixin Zhuang
- Key Laboratory of Advanced Polymer Materials of Shanghai, School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
12
|
Lin J, Wu Q, Qiao J, Zheng S, Liu W, Wu L, Liu J, Zeng Z. A review on composite strategy of MOF derivatives for improving electromagnetic wave absorption. iScience 2023; 26:107132. [PMID: 37456858 PMCID: PMC10338214 DOI: 10.1016/j.isci.2023.107132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
To address the electromagnetic wave (EMW) pollution issues caused by the development of electronics and wireless communication technology, it is urgent to develop efficient EMW-absorbing materials. With controllable composition, diverse structure, high porosity, and large specific surface area, metal-organic framework (MOF) derivatives have sparked the infinite passion and creativity of researchers in the electromagnetic field. Against the challenges of poor inherent impedance matching and insufficient attenuation capability of pure MOF derivative, designing and developing MOF derivative-based composites by compounding MOF with other materials, such as graphene, CNTs, MXene, and so on, has been an effective strategy for constructing high-efficiency EMW absorbing materials. This review systematically expounds the research progress of MOF derivative-based composite strategies, and discusses the challenges and opportunities faced by MOF derivatives in the field of EMW absorption. This work can provide some good ideas for researchers to design and prepare high-efficiency MOF-based EMW absorbing materials in applications of next-generation electronics and aerospace.
Collapse
Affiliation(s)
- Jingpeng Lin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Qilei Wu
- Science and Technology on Electromagnetic Compatibility Laboratory, China Ship Development and Design Centre, Wuhan 430064, PR China
| | - Jing Qiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Sinan Zheng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Wei Liu
- Institute of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518063, PR China
| | - Lili Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Zhihui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
- Suzhou Research Institute of Shandong University, Suzhou 215123, PR China
| |
Collapse
|
13
|
Liu M, Zhao B, Pei K, Qian Y, Yang C, Liu Y, Cao H, Zhang J, Che R. An Ion-Engineering Strategy to Design Hollow FeCo/CoFe 2 O 4 Microspheres for High-Performance Microwave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300363. [PMID: 36929568 DOI: 10.1002/smll.202300363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Although assembled hollow architectures have received considerable attention as lightweight functional materials, their uncontrollable self-aggregation and tedious synthetic methods hinder precise construction and modulation. Therefore, this study proposes a bi-ion synergistic regulation strategy to design assembled hollow-shaped cobalt spinel oxide microspheres. Dominated by the coordination-etching effects of F- and the hydrolysis-complex contributions of NH4 + , the unique construction is formed attributed to the dynamic cycles between metal complexes and precipitates. Meanwhile, their basic structures are perfectly retained after reduction treatment, enabling FeCo/CoFe2 O4 bimagnetic system to be obtained. Subsequently, in-depth analyses are conducted. Investigations reveal that multiscale magnetic coupling networks and enriched air-material heterointerfaces contribute to the remarkable magnetic-dielectric behavior, supported by the advanced off-axis electron holography technique. Consequently, the obtained FeCo/CoFe2 O4 composites exhibit excellent microwave absorption performances with minimal reflection losses (RLmin ) as high as -51.6 dB, an effective absorption bandwidth (EAB) of 4.7 GHz, and a matched thickness of 1.4 mm. Thus, this work provides an informative guide for rationally assembling building blocks into hollow architectures as advanced microwave absorbers through bi-ion and even multi-ion synergistic engineering mechanisms.
Collapse
Affiliation(s)
- Min Liu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Biao Zhao
- School of Microelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Ke Pei
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Yuetong Qian
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Chendi Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Yihao Liu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | - Hui Cao
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
| | | | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai, 200438, P. R. China
- Zhejiang Laboratory, Hangzhou, 311100, P. R. China
| |
Collapse
|
14
|
Fang J, You W, Xu C, Yang B, Wang M, Zhang J, Che R. Phase Transition Induced via the Template Enabling Cocoon-like MoS 2 an Exceptionally Electromagnetic Absorber. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205407. [PMID: 36461729 DOI: 10.1002/smll.202205407] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Structural engineering via the template method is efficient for micro-nano assembling. However, only structural design and lack of composition control restrict their advanced application. To overcome this issue, applying a template to simultaneously realize the structural design and fine component control is highly desired, which has been ignored. In this study, a spinel-shaped MoS2 heterostructure with controlled phase ratios of 1H and 2H phase is developed using the AlOOH template method. This work demonstrates that the MoS2 phase transition mechanism from 2H to 1T is substantially attributed to the close exposed crystal's surface and approximately accordant surface energy. The superiority and additional proof are provided based on density-functional theory simulation, transmission electron microscope holography, etc. With an effective absorptance region of 6.3 GHz under a thickness of 1.4 mm, the reported samples present outstanding microwave absorption capacity. This is attributed to the beneficial coupled effect between the well-designed structure and phase regulation. This work offers valuable insights into structural engineering and component regulation template methods.
Collapse
Affiliation(s)
- Jiefeng Fang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai, 200438, P. R. China
| | - Wenbin You
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai, 200438, P. R. China
| | - Chunyang Xu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai, 200438, P. R. China
| | - Bintong Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai, 200438, P. R. China
| | - Min Wang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai, 200438, P. R. China
| | | | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, School of Microelectronics, Fudan University, Shanghai, 200438, P. R. China
- Zhejiang Laboratory, Hangzhou, 311100, P. R. China
| |
Collapse
|
15
|
Wu M, Wang H, Liang X, Wang D. Optimized electromagnetic wave absorption of α-Fe 2O 3@MoS 2nanocomposites with core-shell structure. NANOTECHNOLOGY 2023; 34:145703. [PMID: 36563351 DOI: 10.1088/1361-6528/acae29] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Core-shell structures and interfacial polarization are of great significance to meet the diversified requirements of microwave attenuation. Herein,α-Fe2O3@MoS2nanocomposites are fabricated via a simple two-step hydrothermal process, in which MoS2nanosheets as the shell are self-assembled andα-Fe2O3microdrums are used as the core to constitute a special flower-like morphology with core-shell structure. This structure can provide more interface contact to achieve strong interfacial polarization and possibly offer more multiple reflection and scattering of electromagnetic waves. Furthermore, the microwave dissipation performances ofα-Fe2O3@MoS2nanocomposites can be significantly improved through construction of core-shell structure and flower-like morphology, controlling the content ofα-Fe2O3microdrums and adjusting the filler loading ratios. This work proves that the as-synthesized nanocomposites achieve excellent effective absorption bandwidth and outstanding electromagnetic wave absorption capabilities due to their special interfaces, core-shell structures and good impedance matching conditions. Therefore,α-Fe2O3@MoS2nanocomposites are expected to be a novel and desirable candidate for high-performance electromagnetic wave absorbers.
Collapse
Affiliation(s)
- Mei Wu
- Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Hongchang Wang
- Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Xiaohui Liang
- Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Dunhui Wang
- Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| |
Collapse
|
16
|
Gao Z, Iqbal A, Hassan T, Zhang L, Wu H, Koo CM. Texture Regulation of Metal-Organic Frameworks, Microwave Absorption Mechanism-Oriented Structural Optimization and Design Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204151. [PMID: 36253151 PMCID: PMC9762306 DOI: 10.1002/advs.202204151] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/15/2022] [Indexed: 05/12/2023]
Abstract
Texture regulation of metal-organic frameworks (MOFs) is essential for controlling their electromagnetic wave (EMW) absorption properties. This review systematically summarizes the recent advancements in texture regulation strategies for MOFs, including etching and exchange of central ions, etching and exchange of ligands, chemically induced self-assembly, and MOF-on-MOF heterostructure design. Additionally, the EMW absorption mechanisms in approaches based on structure-function dependencies, including nano-micro topological engineering, defect engineering, interface engineering, and hybrid engineering, are comprehensively explored. Finally, current challenges and future research orientation are proposed. This review aims to provide new perspectives for designing MOF-derived EMW-absorption materials to achieve essential breakthroughs in mechanistic investigations in this promising field.
Collapse
Affiliation(s)
- Zhenguo Gao
- MOE Key Laboratory of Material Physics and Chemistry under ExtraordinaryNorthwestern Polytechnical UniversityXi'an710072China
- School of Advanced Materials Science and EngineeringSungKyunKwan UniversitySeobu‐ro 2066, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
- Materials Architecturing Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Aamir Iqbal
- School of Advanced Materials Science and EngineeringSungKyunKwan UniversitySeobu‐ro 2066, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
| | - Tufail Hassan
- School of Advanced Materials Science and EngineeringSungKyunKwan UniversitySeobu‐ro 2066, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
| | - Limin Zhang
- MOE Key Laboratory of Material Physics and Chemistry under ExtraordinaryNorthwestern Polytechnical UniversityXi'an710072China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry under ExtraordinaryNorthwestern Polytechnical UniversityXi'an710072China
| | - Chong Min Koo
- School of Advanced Materials Science and EngineeringSungKyunKwan UniversitySeobu‐ro 2066, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
- Materials Architecturing Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- School of Chemical EngineeringSungKyunKwan UniversitySeobu‐ro 2066, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
| |
Collapse
|
17
|
Peng H, Huang J, Ren H, Xie T, Deng S, Yao X, Lin H. Parallel Structure Enhanced Polysilylaryl-enyne/Ca 0.9La 0.067TiO 3 Composites with Ultra-High Dielectric Constant and Thermal Conductivity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45893-45903. [PMID: 36191165 DOI: 10.1021/acsami.2c13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the rapid development of the microwave communication industry, microwave dielectric materials have been widely studied as the medium of signal transmission. Nowadays, with the increase in communication frequency, devices are miniaturized, and dielectric materials are required to have higher dielectric constants. At the same time, the miniaturization of devices brings about an increase in power density, which puts forward higher requirements for the thermal conductivity of materials. In this work, polysilylaryl-enyne (PSAE) and Ca0.9La0.067TiO3 (CLT) were chosen as the matrix and filler, respectively, to construct a parallel model composite through a freeze casting method and a 0-3 model composite through the direct mixing method, respectively. After comparing the microstructures of the two models, their dielectric properties and thermal conductivity were measured and simulated. The parallel model composites in the stable range possess uniform parallel structures, and the solid content limit for them could be as high as 73.2%, which is much higher than that of the 0-3 model composites. While the 0-3 model composite possesses an optimal dielectric constant of 25.4 (@10 GHz) and a thermal conductivity of 0.965 W·m-1·K-1, the parallel model composite possesses a 2 times higher dielectric constant of 76.2 (@10 GHz) and a 1 times higher thermal conductivity of 2.095 W·m-1·K-1. Since the parallel model composite possesses much higher dielectric constant and thermal conductivity than traditional 0-3 model composites, it can be an excellent candidate for microwave communication.
Collapse
Affiliation(s)
- Haiyi Peng
- Information Materials and Devices Research Center, Shanghai Institute of Ceramics, Chinese Academy of Science, 588 Heshuo Road, Shanghai201800, PR China
| | - Jian Huang
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, 585 Heshuo Road, Shanghai201800, PR China
| | - Haishen Ren
- Information Materials and Devices Research Center, Shanghai Institute of Ceramics, Chinese Academy of Science, 588 Heshuo Road, Shanghai201800, PR China
| | - Tianyi Xie
- Information Materials and Devices Research Center, Shanghai Institute of Ceramics, Chinese Academy of Science, 588 Heshuo Road, Shanghai201800, PR China
| | - Shifeng Deng
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (ECUST) Ministry of Education, Shanghai200237, China
| | - Xiaogang Yao
- Information Materials and Devices Research Center, Shanghai Institute of Ceramics, Chinese Academy of Science, 588 Heshuo Road, Shanghai201800, PR China
| | - Huixing Lin
- Information Materials and Devices Research Center, Shanghai Institute of Ceramics, Chinese Academy of Science, 588 Heshuo Road, Shanghai201800, PR China
| |
Collapse
|
18
|
Zeng Z, Xu D, Li M, Liu Z, Xu R, Liu D. Confined transformation of trifunctional Co2(OH)2CO3 nanosheet assemblies into hollow porous Co@N-doped carbon spheres for efficient microwave absorption. J Colloid Interface Sci 2022; 622:625-636. [DOI: 10.1016/j.jcis.2022.04.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/06/2023]
|
19
|
Tao J, Tan R, Xu L, Zhou J, Yao Z, Lei Y, Chen P, Li Z, Ou JZ. Ion-Exchange Strategy for Metal-Organic Frameworks-Derived Composites with Tunable Hollow Porous and Microwave Absorption. SMALL METHODS 2022; 6:e2200429. [PMID: 35676230 DOI: 10.1002/smtd.202200429] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Hollow metal-organic frameworks (MOFs) with careful phase engineering have been considered to be suitable candidates for high-performance microwave absorbents. However, there has been a lack of direct methods tailored to MOFs in this area. Here, a facile and safe Ni2+ -exchange strategy is proposed to synthesize graphite/CoNi alloy hollow porous composites from Ni2+ concentration-dependent etching of Zeolite imidazole frame-67 (ZIF-67) MOF and subsequent thermal field regulation. Such a special combination of hollow structure and carefully selected hybrid phase are with optimized impedance matching and electromagnetic attenuation. Especially, the suitable carrier transport model and the rich polarization site enhance the dielectric loss, while more significant hysteresis loss and more natural resonance increase the magnetic loss. As a result, excellent microwave absorbing (MA) performances of both broadband absorption (7.63 GHz) and high-efficiency loss (-63.79 dB) are obtained. Moreover, the applicability and practicability of the strategy are demonstrated. This work illustrates the unique advantages of ion-exchange strategy in structure design, component optimization, and electromagnetic regulation, providing a new reference for the 5G cause and MA field.
Collapse
Affiliation(s)
- Jiaqi Tao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
| | - Ruiyang Tan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
| | - Linling Xu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
| | - Jintang Zhou
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
| | - Zhengjun Yao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
| | - Yiming Lei
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210000, China
| | - Ping Chen
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210000, China
| | - Zhong Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jian Zhen Ou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
- School of Engineering, RMIT University, Melbourne, 3000, Australia
| |
Collapse
|
20
|
Yang Z, You W, Xiong X, Zhang R, Wu Z, Zhao B, Wang M, Liu X, Zhang X, Che R. Morphology-Evolved Succulent-like FeCo Microarchitectures with Magnetic Configuration Regulation for Enhanced Microwave Absorption. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32369-32378. [PMID: 35816054 DOI: 10.1021/acsami.2c06767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The regulation of magnetic configuration through diverse morphologies to achieve a rapid magnetic response has attracted considerable academic favor on account of the unique application prospects in various fields. Herein, porous FeCo alloys with morphology evolved from spheres to succulent-like microstructures are successfully constructed via a facile hydrothermal reaction-hydrogen reduction synthetic strategy. A multiple balance/competition mechanism is proposed, including the coexistence of the dissolution-precipitation balance of hydroxides and the dissociation-stability balance of coordination compounds, the Fe3+-Co2+ competition, and the precipitation-coordination reaction contest. As the morphology evolves to a succulent-like assembly, the multidomain features with a stable combination of vortex states and the violent motion of magnetic vectors contribute to the improvement of magnetic storage capacity and loss capability, which are evidenced by the off-axis electron holography and micromagnetic simulation. Consequently, the succulent-like FeCo exhibits enhanced permeability and microwave absorption performance. The effective absorption bandwidth reaches 5.68 GHz, and the maximum reflection loss is elevated to -53.81 dB. This work sheds considerable insight into the microstructure regulation with an application in microwave absorption and offers guidance in research for the topological magnetic configuration and dynamic response mechanism of magnetic alloys.
Collapse
Affiliation(s)
- Ziqi Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Wenbin You
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Xuhui Xiong
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Ruixuan Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Zhengchen Wu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Biao Zhao
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Min Wang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Xianhu Liu
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Ministry of Education, Zhengzhou 450002, P. R. China
| | - Xuefeng Zhang
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
- Joint-Research Center for Computational Materials, Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
21
|
Xu C, Liu P, Wu Z, Zhang H, Zhang R, Zhang C, Wang L, Wang L, Yang B, Yang Z, You W, Che R. Customizing Heterointerfaces in Multilevel Hollow Architecture Constructed by Magnetic Spindle Arrays Using the Polymerizing-Etching Strategy for Boosting Microwave Absorption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200804. [PMID: 35404542 PMCID: PMC9189646 DOI: 10.1002/advs.202200804] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/18/2022] [Indexed: 05/20/2023]
Abstract
Heterointerface engineering is evolving as an effective approach to tune electromagnetic functional materials, but the mechanisms of heterointerfaces on microwave absorption (MA) remain unclear. In this work, abundant electromagnetic heterointerfaces are customized in multilevel hollow architecture via a one-step synergistic polymerizing-etching strategy. Fe/Fe3 O4 @C spindle-on-tube structures are transformed from FeOOH@polydopamine precursors by a controllable reduction process. The impressive electromagnetic heterostructures are realized on the Fe/Fe3 O4 @C hollow spindle arrays and induce strong interfacial polarization. The highly dispersive Fe/Fe3 O4 nanoparticles within spindles build multi-dimension magnetic networks, which enhance the interaction with incident microwaves and reinforce magnetic loss capacity. Moreover, the hierarchically hollow structure and electromagnetic synergistic components are conducive to the impedance matching between absorbing materials and air medium. Furthermore, the mechanisms of electromagnetic heterointerfaces on the MA are systematically investigated. Accordingly, the as-prepared hierarchical Fe/Fe3 O4 @C microtubes exhibit remarkable MA performance with a maximum refection loss of -55.4 dB and an absorption bandwidth of 4.2 GHz. Therefore, in this study, the authors not only demonstrate a synergistic strategy to design multilevel hollow architecture, but also provide a fundamental guide in heterointerface engineering of highly efficient electromagnetic functional materials.
Collapse
Affiliation(s)
- Chunyang Xu
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsDepartment of Materials ScienceFudan UniversityShanghai200438P. R. China
| | - Panbo Liu
- School of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710129P. R. China
| | - Zhengchen Wu
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsDepartment of Materials ScienceFudan UniversityShanghai200438P. R. China
| | - Huibin Zhang
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsDepartment of Materials ScienceFudan UniversityShanghai200438P. R. China
| | - Ruixuan Zhang
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsDepartment of Materials ScienceFudan UniversityShanghai200438P. R. China
| | - Chang Zhang
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsDepartment of Materials ScienceFudan UniversityShanghai200438P. R. China
| | - Lei Wang
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsDepartment of Materials ScienceFudan UniversityShanghai200438P. R. China
| | - Longyuan Wang
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsDepartment of Materials ScienceFudan UniversityShanghai200438P. R. China
| | - Bingtong Yang
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsDepartment of Materials ScienceFudan UniversityShanghai200438P. R. China
| | - Ziqi Yang
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsDepartment of Materials ScienceFudan UniversityShanghai200438P. R. China
| | - Wenbin You
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsDepartment of Materials ScienceFudan UniversityShanghai200438P. R. China
| | - Renchao Che
- Laboratory of Advanced MaterialsShanghai Key Lab of Molecular Catalysis and Innovative MaterialsDepartment of Materials ScienceFudan UniversityShanghai200438P. R. China
- Joint‐Research Center for Computational MaterialsZhejiang LaboratoryHangzhou311100China
| |
Collapse
|
22
|
Pan F, Cai L, Shi Y, Dong Y, Zhu X, Cheng J, Jiang H, Wang X, Jiang Y, Lu W. Heterointerface Engineering of β-Chitin/Carbon Nano-Onions/Ni-P Composites with Boosted Maxwell-Wagner-Sillars Effect for Highly Efficient Electromagnetic Wave Response and Thermal Management. NANO-MICRO LETTERS 2022; 14:85. [PMID: 35352181 PMCID: PMC8964898 DOI: 10.1007/s40820-022-00804-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/05/2022] [Indexed: 05/11/2023]
Abstract
The rational construction of microstructure and composition with enhanced Maxwell-Wagner-Sillars effect (MWSE) is still a challenging direction for reinforcing electromagnetic wave (EMW) absorption performance, and the related EMW attenuation mechanism has rarely been elucidated. Herein, MWSE boosted β-chitin/carbon nano-onions/Ni-P composites is prepared according to the heterointerface engineering strategy via facile layer-by-layer electrostatic assembly and electroless plating techniques. The heterogeneous interface is reinforced from the aspect of porous skeleton, nanomaterials and multilayer construction. The composites exhibit competitive EMW response mechanism between the conductive loss and the polarization/magnetic loss, as describing like the story of "The Hare and the Tortoise". As a result, the composites not only achieve a minimum reflection loss (RLmin) of - 50.83 dB and an effective bandwidth of 6.8 GHz, but also present remarkable EMW interference shielding effectiveness of 66.66 dB. In addition, diverse functions such as good thermal insulation, infrared shielding and photothermal performance were also achieved in the hybrid composites as a result of intrinsic morphology and chemicophysics properties. Therefore, we believe that the boosted MWSE open up a novel orientation toward developing multifunctional composites with high-efficient EMW response and thermal management.
Collapse
Affiliation(s)
- Fei Pan
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Lei Cai
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Yuyang Shi
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Yanyan Dong
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Xiaojie Zhu
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Jie Cheng
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Haojie Jiang
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Xiao Wang
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Yifeng Jiang
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Wei Lu
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China.
| |
Collapse
|
23
|
Yang J, Liu Z, Zhou H, Jia L, Wu A, Jiang L. Enhanced Electromagnetic-Wave Absorbing Performances and Corrosion Resistance via Tuning Ti Contents in FeCoNiCuTi x High-Entropy Alloys. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12375-12384. [PMID: 35244391 DOI: 10.1021/acsami.1c25079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Efficient and stable electromagnetic-wave (EMW) absorption materials have attracted great attention in the field of reducing microwave pollution. Herein, FeCoNiCuTix high-entropy alloys (HEAs) as electromagnetic-wave absorbing materials were prepared by a high-energy ball-milling method. The as-milled HEA powders presented a flaky shape with a high aspect ratio. Impedance matching was efficiently optimized by severe lattice distortion, which was caused by Ti incorporation. The introduced plentiful defects in FeCoNiCuTix HEAs provided abundant polarization sites for dielectric loss. By tuning Ti contents, FeCoNiCuTi0.2 HEAs delivered excellent EMW absorption performances. The maximal reflection loss (RLmax) values reached -47.8 dB at 10.86 GHz as thin as 2.16 mm, and the widest bandwidth was 4.76 GHz (5.97-10.73 GHz). Furthermore, the introduction of Ti enhanced corrosion resistance via increasing the charge transfer resistance of a passivated film. Those characteristics of FeCoNiCuTix HEAs made these materials a practical gigahertz-range EMW absorber. Additionally, our findings provided a facile and tunable strategy for designing EMW absorbing materials, which was aimed at lightweight, highly efficient absorption, and resistance to harsh environments.
Collapse
Affiliation(s)
- Jianping Yang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo University, Ningbo 315211, P. R. China
| | - Zhonghao Liu
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Haoran Zhou
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo University, Ningbo 315211, P. R. China
| | - Lei Jia
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo University, Ningbo 315211, P. R. China
| | - Anhua Wu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800, P. R. China
| | - Linwen Jiang
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|
24
|
Wu Z, Cheng HW, Jin C, Yang B, Xu C, Pei K, Zhang H, Yang Z, Che R. Dimensional Design and Core-Shell Engineering of Nanomaterials for Electromagnetic Wave Absorption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107538. [PMID: 34755916 DOI: 10.1002/adma.202107538] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Indexed: 05/17/2023]
Abstract
Electromagnetic (EM) wave absorption materials possess exceptionally high EM energy loss efficiency. With vigorous developments in nanotechnology, such materials have exhibited numerous advanced EM functions, including radiation prevention and antiradar stealth. To achieve improved EM performance and multifunctionality, the elaborate control of microstructures has become an attractive research direction. By designing them as core-shell structures with different dimensions, the combined effects, such as interfacial polarization, conduction networks, magnetic coupling, and magnetic-dielectric synergy, can significantly enhance the EM wave absorption performance. Herein, the advances in low-dimensional core-shell EM wave absorption materials are outlined and a selection of the most remarkable examples is discussed. The derived key information regarding dimensional design, structural engineering, performance, and structure-function relationship are comprehensively summarized. Moreover, the investigation of the cutting-edge mechanisms is given particular attention. Additional applications, such as oxidation resistance and self-cleaning functions, are also introduced. Finally, insight into what may be expected from this rapidly expanding field and future challenges are presented.
Collapse
Affiliation(s)
- Zhengchen Wu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Han-Wen Cheng
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Chen Jin
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Bintong Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Chunyang Xu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Ke Pei
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Huibin Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Ziqi Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
25
|
Ren S, Yu H, Wang L, Huang Z, Lin T, Huang Y, Yang J, Hong Y, Liu J. State of the Art and Prospects in Metal-Organic Framework-Derived Microwave Absorption Materials. NANO-MICRO LETTERS 2022; 14:68. [PMID: 35217977 PMCID: PMC8881588 DOI: 10.1007/s40820-022-00808-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/14/2022] [Indexed: 05/12/2023]
Abstract
Microwave has been widely used in many fields, including communication, medical treatment and military industry; however, the corresponding generated radiations have been novel hazardous sources of pollution threating human's daily life. Therefore, designing high-performance microwave absorption materials (MAMs) has become an indispensable requirement. Recently, metal-organic frameworks (MOFs) have been considered as one of the most ideal precursor candidates of MAMs because of their tunable structure, high porosity and large specific surface area. Usually, MOF-derived MAMs exhibit excellent electrical conductivity, good magnetism and sufficient defects and interfaces, providing obvious merits in both impedance matching and microwave loss. In this review, the recent research progresses on MOF-derived MAMs were profoundly reviewed, including the categories of MOFs and MOF composites precursors, design principles, preparation methods and the relationship between mechanisms of microwave absorption and microstructures of MAMs. Finally, the current challenges and prospects for future opportunities of MOF-derived MAMs are also discussed.
Collapse
Affiliation(s)
- Shuning Ren
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zhikun Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Tengfei Lin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yudi Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jian Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yichuan Hong
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jinyi Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| |
Collapse
|
26
|
Cheng H, Pan Y, Wang X, Liu C, Shen C, Schubert DW, Guo Z, Liu X. Ni Flower/MXene-Melamine Foam Derived 3D Magnetic/Conductive Networks for Ultra-Efficient Microwave Absorption and Infrared Stealth. NANO-MICRO LETTERS 2022; 14:63. [PMID: 35190917 PMCID: PMC8861240 DOI: 10.1007/s40820-022-00812-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/22/2022] [Indexed: 05/14/2023]
Abstract
The development of multifunctional and efficient electromagnetic wave absorbing materials is a challenging research hotspot. Here, the magnetized Ni flower/MXene hybrids are successfully assembled on the surface of melamine foam (MF) through electrostatic self-assembly and dip-coating adsorption process, realizing the integration of microwave absorption, infrared stealth, and flame retardant. Remarkably, the Ni/MXene-MF achieves a minimum reflection loss (RLmin) of - 62.7 dB with a corresponding effective absorption bandwidth (EAB) of 6.24 GHz at 2 mm and an EAB of 6.88 GHz at 1.8 mm. Strong electromagnetic wave absorption is attributed to the three-dimensional magnetic/conductive networks, which provided excellent impedance matching, dielectric loss, magnetic loss, interface polarization, and multiple attenuations. In addition, the Ni/MXene-MF endows low density, excellent heat insulation, infrared stealth, and flame-retardant functions. This work provided a new development strategy for the design of multifunctional and efficient electromagnetic wave absorbing materials.
Collapse
Affiliation(s)
- Haoran Cheng
- Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Yamin Pan
- Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Xin Wang
- Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 7, 91058, Erlangen, Germany
| | - Chuntai Liu
- Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Changyu Shen
- Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, People's Republic of China
| | - Dirk W Schubert
- Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nuremberg, Martensstr. 7, 91058, Erlangen, Germany
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Xianhu Liu
- Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), National Engineering Research Center for Advanced Polymer Processing Technology, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
27
|
Wen C, Li X, Zhang R, Xu C, You W, Liu Z, Zhao B, Che R. High-Density Anisotropy Magnetism Enhanced Microwave Absorption Performance in Ti 3C 2T x MXene@Ni Microspheres. ACS NANO 2022; 16:1150-1159. [PMID: 34957827 DOI: 10.1021/acsnano.1c08957] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Two-dimensional materials, especially the newly emerging MXene, have attracted numerous interests in the fields of energy conversion/storage and electromagnetic shielding/absorption. However, the inherently inevitable aggregation and absence of magnetic loss of MXene considerably limit its electromagnetic absorption application. The introduction of magnetic component and favorable structural engineering are the alternatives to improve the microwave absorption (MA) performance. Herein, we report a spheroidization strategy to assemble double-shell MXene@Ni microspheres, where the commonly lamellar MXene are reshaped into three-dimensional microspheres that provide the substrate for oriented growth of Ni nanospikes. Whereas this structural feature offers massive accessible active surfaces that effectively promote the dielectric loss ability, the introduction of magnetic Ni nanospikes enables the additional magnetic loss capacity. Benefiting from these merits, the synthesized 3D MXene@Ni microspheres exhibit superior MA performance with the minimum reflection loss value of -59.6 dB at an ultrathin thickness (∼1.5 mm) and effective absorption bandwidth of 4.48 GHz. Moreover, the electron holography results reveal that the high-density anisotropy magnetism plays an important role in the improvement of MA performance, which provides an insight for the design of MXene-based materials as high-efficient microwave absorbers.
Collapse
Affiliation(s)
- Caiyue Wen
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xiao Li
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Ruixuan Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Chunyang Xu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Wenbin You
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Zhengwang Liu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Biao Zhao
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
- Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
28
|
Miao P, Yu Z, Chen W, Zhou R, Zhao W, Chen KJ, Kong J. Synergetic Dielectric and Magnetic Losses of a Core-Shell Co/MnO/C Nanocomplex toward Highly Efficient Microwave Absorption. Inorg Chem 2022; 61:1787-1796. [PMID: 34991312 DOI: 10.1021/acs.inorgchem.1c03749] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-performance microwave-absorbing materials (MAMs) derived from metal-organic frameworks (MOFs) have attracted considerable attention due to their tunable chemical composition and microstructure. In this contribution, a core-shell-structured Co/MnO/C nanocomplex was prepared using a CoMn-MIL MOF by a facile hydrothermal synthesis and subsequent pyrolysis process. The optimal microwave absorption (MA) property of the as-prepared Co/MnO/C nanocomplex was achieved by the regulation of the Co2+/Mn2+ molar ratio. The minimum reflection loss (RLmin) of the Co/MnO/C-31 nanocomplex was low to -55.0 dB at 16.2 GHz with a thickness of 1.49 mm, and the effective absorption bandwidth (EAB) was high to 5.95 GHz (12.05-18 GHz) at a thickness of 1.8 mm. The mixed-metal nanocomplex with the core-shell structure exhibited outstanding MA performance, corresponding to the synergetic effect of the magnetic and dielectric loss. It provides a high efficiency strategy for rendering low reflection loss and broad EAB to high-performance MAMs.
Collapse
Affiliation(s)
- Peng Miao
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China
| | - Zhen Yu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Weixing Chen
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China
| | - Rui Zhou
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Weifeng Zhao
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China
| | - Kai-Jie Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jie Kong
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
29
|
Liu W, Duan P, Ding Y, Zhang B, Su H, Zhang X, Wang J, Zou Z. One-dimensional MOFs-derived magnetic composites for efficient microwave absorption at ultralow thickness through controllable hydrogen reduction. Dalton Trans 2022; 51:6597-6606. [DOI: 10.1039/d2dt00113f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic materials with ingeniously designed structure may be utilized as highly efficient microwave absorbing materials (MAMS) working at ultralow matching thickness. However, it remains a challenge to decrease the matching...
Collapse
|
30
|
Zhang C, Wu Z, Xu C, Yang B, Wang L, You W, Che R. Hierarchical Ti 3 C 2 T x MXene/Carbon Nanotubes Hollow Microsphere with Confined Magnetic Nanospheres for Broadband Microwave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104380. [PMID: 34914181 DOI: 10.1002/smll.202104380] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/23/2021] [Indexed: 06/14/2023]
Abstract
Hierarchical hollow structure with unique interfacial properties holds great potential for microwave absorption (MA). Ti3 C2 Tx MXene has been a hot topic due to rich interface structure, abundant defects, and functional groups. However, its overhigh permittivity and poor aggregation-resistance limit the further application. Herein, a hierarchical MXene-based hollow microsphere is prepared via a facile spray drying strategy. Within the microsphere, few-layered MXene nanosheets are separated by dispersed carbon nanotubes (CNTs), exposing abundant dielectric polarization interfaces. Besides, numerous magnetic Fe3 O4 nanospheres are uniformly dispersed and confined within nano-cavities between 1D network and 2D framework. Such a novel structure simultaneously promotes interfacial polarization by ternary MXene/CNTs/Fe3 O4 interfaces, enhances magnetic loss by microscale and nanoscale coupling network, enlarges conduction loss by MXene/CNTs dual-network, and optimizes impedance matching by hierarchical porous structure. Therefore, Fe3 O4 @Ti3 C2 Tx /CNTs composite achieves excellent MA property with a maximum reflection loss of -40.1 dB and an effective bandwidth of 5.8 GHz at the thickness of only 2 mm. This work demonstrates a feasible hierarchical structure design strategy for multi-dimension MXene composite to realize the high-efficiency MA performance.
Collapse
Affiliation(s)
- Chang Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Zhengchen Wu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Chunyang Xu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Bintong Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Lei Wang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Wenbin You
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
31
|
Miao P, Chen W, Li K, Zhao W, Kong J. Hierarchical Co/CoO/FeO/C nanocomplex derived from Co(OH) 2@NH 2-MIL-88 to aid highly efficient microwave absorption. NEW J CHEM 2022. [DOI: 10.1039/d2nj04411k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Facile preparation of a flake-like Co/CoO/FeO/C nanocomplex employing Co(OH)2 on NH2-MIL-88B through one-step pyrolysis. The nanocomplex can efficiently scatter microwaves.
Collapse
Affiliation(s)
- Peng Miao
- School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an, Shaanxi, 710021, China
- Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Xi’an, Shaanxi, 710043, China
| | - Weixing Chen
- School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an, Shaanxi, 710021, China
| | - Kailei Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, China
| | - Weifeng Zhao
- School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an, Shaanxi, 710021, China
| | - Jie Kong
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, 710072, China
| |
Collapse
|
32
|
Peng M, Qin F, Zhou L, Wei H, Zhu Z, Shen X. Material-structure integrated design for ultra-broadband all-dielectric metamaterial absorber. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:115701. [PMID: 34905743 DOI: 10.1088/1361-648x/ac431e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Material and structure are the essential elements of all-dielectric metamaterials. Structure design for specific dielectric materials has been studied while the contribution of material and synergistic effect of material and structure have been overlooked in the past years. Herein, we propose a material-structure integrated design (MSID) methodology for all-dielectric metamaterials, increasing the degree of freedom in the metamaterial design, to comprehensively optimize microwave absorption performance and further investigate the contribution of material and structure to absorption. A dielectric metamaterial absorber with an ultra-broadband absorption from 5.3 to 18.0 GHz is realized. Theoretical calculation and numerical simulation demonstrate that the symphony of material and structure excites multiple resonance modes encompassing quarter-wavelength interference cancellation, spoof surface plasmon polariton mode, dielectric resonance mode and grating mode, which is essential to afford the desirable absorption performance. This work highlights the superiority of coupling of material and structure and provides an effective design and optimization strategy for all-dielectric metamaterial absorbers.
Collapse
Affiliation(s)
- Mengyue Peng
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Faxiang Qin
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Liping Zhou
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Huijie Wei
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zihao Zhu
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xiaopeng Shen
- School of Material Science and Physics, China University of Mining and Technology, Xuzhou, 221116, People's Republic of China
| |
Collapse
|
33
|
Cheng R, Wang Y, Di X, Lu Z, Wang P, Ma M, Ye J. Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption. J Colloid Interface Sci 2021; 609:224-234. [PMID: 34896826 DOI: 10.1016/j.jcis.2021.11.197] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
Abstract
Nowadays, facing the inevitable electromagnetic (EM) pollution caused by many electronic products, it is urgent to develop high-performance microwave absorbing materials. In particular, the bimetallic carbon-based composites derived from MOFs exhibit excellent microwave absorption potential due to their simple preparation, low cost, adjustable morphology and magnetoelectric synergy mechanism. In this work, we successfully prepared plum-like NiCo@C composite by simple solvothermal method and carbonization treatment, which displays strong absorption (-55.4 dB) and wide effective absorption band (EAB, 7.2 GHz) when the loading is 20 wt%. The plum-like structure greatly enriches the non-uniform interface and the structural anisotropy contributes to the dissipation of electromagnetic waves. At the same time, the band hybridization and magnetic coupling of NiCo@C contribute to the coordination of EM characteristics. Overall, this work proves the feasibility of NiCo@C hierarchical composite in the field of microwave absorbing, and provides insight for the development of high-performance absorbers.
Collapse
Affiliation(s)
- Runrun Cheng
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Yan Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China.
| | - Xiaochuang Di
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Zhao Lu
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Ping Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Mingliang Ma
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Jinrui Ye
- Institute of Science and Technology of Beihang University, Beijing 100191, PR China
| |
Collapse
|
34
|
Li X, You W, Zhang R, Fang J, Zeng Q, Li X, Xu C, Wang M, Che R. Synthesis of Nonspherical Hollow Architecture with Magnetic Fe Core and Ni Decorated Tadpole-Like Shell as Ultrabroad Bandwidth Microwave Absorbers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103351. [PMID: 34651430 DOI: 10.1002/smll.202103351] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The advancement of electromagnetic (EM) protection technology promotes the urgent demand for the structural design of electromagnetic functional materials. Here, tadpole-like Fe@SiO2 @C-Ni (FSCN) composites with magnetic core-shell and nonspherical hollow architectures through multiple hydrolysis-polymerization reactions are reported. The Fe core and well-distributed Ni nanoparticles greatly promote the magnetic properties of FSCN and construct a multiscale magnetic coupling network. Meanwhile, the multishell composites consisting of carbon shell with Ni decorated possess an abundance of heterogeneous interfaces, generating effective interfacial polarization and relaxation. The hollow feature and the coordination of magnetic and dielectric capacities offer an optimized impedance balance, providing a fundament for the microwaves propagating into the absorber. Owing to the attractive effects resulted from the deliberate tadpole-like structure design, the FSCN composites ensure an effective EM energy conversion at the high-frequency region, which obtain the strongest reflection loss value of -45.2 dB and the extremely broad effective absorption bandwidth of 13.1 GHz. This work provides an important solution for magnetic-dielectric nanostructure design for microwave absorption and energy conversion materials.
Collapse
Affiliation(s)
- Xiaohui Li
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Wenbin You
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Ruixuan Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Jiefeng Fang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Qingwen Zeng
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Xiao Li
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| | - Chunyang Xu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Min Wang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
- Department of Materials Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
35
|
Zhao H, Wang F, Cui L, Xu X, Han X, Du Y. Composition Optimization and Microstructure Design in MOFs-Derived Magnetic Carbon-Based Microwave Absorbers: A Review. NANO-MICRO LETTERS 2021; 13:208. [PMID: 34633562 PMCID: PMC8505592 DOI: 10.1007/s40820-021-00734-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/08/2021] [Indexed: 05/19/2023]
Abstract
Magnetic carbon-based composites are the most attractive candidates for electromagnetic (EM) absorption because they can terminate the propagation of surplus EM waves in space by interacting with both electric and magnetic branches. Metal-organic frameworks (MOFs) have demonstrated their great potential as sacrificing precursors of magnetic metals/carbon composites, because they provide a good platform to achieve high dispersion of magnetic nanoparticles in carbon matrix. Nevertheless, the chemical composition and microstructure of these composites are always highly dependent on their precursors and cannot promise an optimal EM state favorable for EM absorption, which more or less discount the superiority of MOFs-derived strategy. It is hence of great importance to develop some accompanied methods that can regulate EM properties of MOFs-derived magnetic carbon-based composites effectively. This review comprehensively introduces recent advancements on EM absorption enhancement in MOFs-derived magnetic carbon-based composites and some available strategies therein. In addition, some challenges and prospects are also proposed to indicate the pending issues on performance breakthrough and mechanism exploration in the related field.
Collapse
Affiliation(s)
- Honghong Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Fengyuan Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Liru Cui
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Xianzhu Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Xijiang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|
36
|
Zhao S, Yang J, Duan F, Zhang B, Liu Y, Zhang B, Chen C, Qin Y. Rational construction of porous N-doped Fe 2O 3 films on porous graphene foams by molecular layer deposition for tunable microwave absorption. J Colloid Interface Sci 2021; 598:45-55. [PMID: 33894616 DOI: 10.1016/j.jcis.2021.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
Graphene-based materials with porous microstructure have attracted immense attentions due to their wide application in microwave absorption. However, constructing magnetic film with both porous microstructure and uniform pore size by using traditional methods still remains a challenge. To overcome this problem, we reported a facile strategy of molecular layer deposition (MLD) for successfully fabrication of the hybrid-architecture of porous graphene foams and nitrogen-doped porous Fe2O3 films. The surfaces of porous graphene foams are uniformly covered by porous Fe2O3 films without aggregation and the pore structures are widely distributed. The porous graphene-based composites exhibit remarkably enhanced microwave absorption performance compared to the pristine graphene foams. The minimum reflection loss value is increased by approximately 8 times, reaching -64.36 dB with a thickness of only 2.18 mm. More importantly, the absorption property can be precisely modulated by tuning the MLD cycle numbers and effective absorption bandwidth covers 3.04-18.0 GHz by adjusting the thickness from 1.0 to 5.0 mm. This work provides new insights for exploring novel and high-performance graphene-based microwave absorbents and offers a new idea to rationally design three-dimensional composites with porous magnetic films.
Collapse
Affiliation(s)
- Shichao Zhao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Jie Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Duan
- Shanxi Institute of Energy, Taiyuan 030001, China
| | - Baiyan Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yequn Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Bin Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoqiu Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
37
|
Liu X, Liu P, Wang F, Lv X, Yang T, Tian W, Wang C, Tan S, Ji J. Plasma-Induced Defect Engineering and Cation Refilling of NiMoO 4 Parallel Arrays for Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41545-41554. [PMID: 34432425 DOI: 10.1021/acsami.1c09084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Developing highly active water splitting electrocatalysts with ordered micro/nanostructures and uniformly distributed active sites can meet the increasing requirement for sustainable energy storage/utilization technologies. However, the stability of complicated structures and active sites during a long-term process is also a challenge. Herein, we fabricate a novel approach to create sufficient atomic defects via N2 plasma treatment onto parallel aligned NiMoO4 nanosheets, followed by refilling of these defects via heterocation dopants and stabilizing them by annealing. The parallel aligned nanosheet arrays with an open structure and quasi-two-dimensional long-range diffusion channels can accelerate the mass transfer at the electrolyte/gas interface, while the incorporation of Fe/Pt atoms into defect sites can modulate the local electronic environment and facilitate the adsorption/reaction kinetics. The optimized Pt-NP-NMC/CC-5 and Fe-NP-NMC/CC-10 electrodes exhibit low overpotentials of 71 and 241 mV at 10 mA cm-2 for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), respectively, and the assembled device reveals a low voltage of 1.55 V for overall water splitting. This plasma-induced high-efficiency defect engineering and coupled active site stabilization strategy can be extended to large-scale fabrication of high-end electrocatalysts.
Collapse
Affiliation(s)
- Xuesong Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Peng Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Feifei Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xingbin Lv
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Tao Yang
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, P. R. China
| | - Wen Tian
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Caihong Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shuai Tan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Junyi Ji
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
38
|
Wang Y, Gao YN, Yue TN, Chen XD, Che R, Wang M. Liquid metal coated copper micro-particles to construct core-shell structure and multiple heterojunctions for high-efficiency microwave absorption. J Colloid Interface Sci 2021; 607:210-218. [PMID: 34500420 DOI: 10.1016/j.jcis.2021.08.206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022]
Abstract
Facing the inherent defects of magnetic materials, the research of non-magnetic absorbers has gradually become a new direction in the research of microwave absorbers to fit the requirements of a new generation for high strength, wide effective absorption bandwidth. Herein, the liquid metal and copper (LC) composite micro-particles with multiple heterojunctions and core-shell structure, which have an excellent performance of microwave absorption (MA), were prepared by simply coating liquid metal on copper and then annealing. These special LC composite micro-particles exhibit excellent MA performance with the optimal reflection loss of -39.6 dB at thickness of 2.1 mm and a maximum effective absorption bandwidth of 4.96 GHz at thickness of 2.5 mm. The high MA performance of the LC composite particles are due to the enhancement of dielectric loss, including dipolar, interfacial, and dielectric polarization, which is caused by the special core-shell structure, multiple interfaces and heterojunctions. Furthermore, the multiple reflection/scattering of microwaves among particles or on the surface of particles also benefit to the high MA performance. Therefore, this study provides a facile method to construct multiple metal heterojunctions which have great prospects in microwave absorption applications.
Collapse
Affiliation(s)
- Ye Wang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ya-Nan Gao
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Tian-Ning Yue
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xu-Dong Chen
- Key Laboratory of Polymer Composite and Function Materials of Ministry of Education, Key Laboratory for Designed Synthesis and Applied Polymer Materials, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, PR China.
| | - Ming Wang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
39
|
Tian W, Li J, Liu Y, Ali R, Guo Y, Deng L, Mahmood N, Jian X. Atomic-Scale Layer-by-Layer Deposition of FeSiAl@ZnO@Al 2O 3 Hybrid with Threshold Anti-Corrosion and Ultra-High Microwave Absorption Properties in Low-Frequency Bands. NANO-MICRO LETTERS 2021; 13:161. [PMID: 34328577 PMCID: PMC8324648 DOI: 10.1007/s40820-021-00678-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/07/2021] [Indexed: 05/23/2023]
Abstract
Developing highly efficient magnetic microwave absorbers (MAs) is crucial, and yet challenging for anti-corrosion properties in extremely humid and salt-induced foggy environments. Herein, a dual-oxide shell of ZnO/Al2O3 as a robust barrier to FeSiAl core is introduced to mitigate corrosion resistance. The FeSiAl@ZnO@Al2O3 layer by layer hybrid structure is realized with atomic-scale precision through the atomic layer deposition technique. Owing to the unique hybrid structure, the FeSiAl@ZnO@Al2O3 exhibits record-high microwave absorbing performance in low-frequency bands covering L and S bands with a minimum reflection loss (RLmin) of -50.6 dB at 3.4 GHz. Compared with pure FeSiAl (RLmin of -13.5 dB, a bandwidth of 0.5 GHz), the RLmin value and effective bandwidth of this designed novel absorber increased up to ~ 3.7 and ~ 3 times, respectively. Furthermore, the inert ceramic dual-shells have improved 9.0 times the anti-corrosion property of FeSiAl core by multistage barriers towards corrosive medium and obstruction of the electric circuit. This is attributed to the large charge transfer resistance, increased impedance modulus |Z|0.01 Hz, and frequency time constant of FeSiAl@ZnO@Al2O3. The research demonstrates a promising platform toward the design of next-generation MAs with improved anti-corrosion properties.
Collapse
Affiliation(s)
- Wei Tian
- National Engineering Researching Centre of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-Spectral Absorbing Materials and Structures of Ministry of Education, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
- School of Electronic Science and Engineering, The Yangtze Delta Region Institute (Huzhou, University of Electronic Science and Technology of China, Huzhou, 313001, People's Republic of China
| | - Jinyao Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Yifan Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Rashad Ali
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Yang Guo
- School of Electrical and Information Engineering, Panzhihua University, Panzhihua, 617000, People's Republic of China
| | - Longjiang Deng
- National Engineering Researching Centre of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-Spectral Absorbing Materials and Structures of Ministry of Education, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
| | - Nasir Mahmood
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia.
| | - Xian Jian
- National Engineering Researching Centre of Electromagnetic Radiation Control Materials, Key Laboratory of Multi-Spectral Absorbing Materials and Structures of Ministry of Education, State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
- School of Electronic Science and Engineering, The Yangtze Delta Region Institute (Huzhou, University of Electronic Science and Technology of China, Huzhou, 313001, People's Republic of China.
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
| |
Collapse
|
40
|
Li X, You W, Xu C, Wang L, Yang L, Li Y, Che R. 3D Seed-Germination-Like MXene with In Situ Growing CNTs/Ni Heterojunction for Enhanced Microwave Absorption via Polarization and Magnetization. NANO-MICRO LETTERS 2021; 13:157. [PMID: 34279760 PMCID: PMC8289940 DOI: 10.1007/s40820-021-00680-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/18/2021] [Indexed: 05/19/2023]
Abstract
Benefiting from the possible "seed-germination" effect, the "seeds" Ni2+ grow into "buds" Ni nanoparticles and "stem" carbon nanotubes (CNTs) from the enlarged "soil" of MXene skeleton. Compared with the traditional magnetic agglomeration, the MXene-CNTs/Ni hybrids exhibit the highly spatial dispersed magnetic architecture. 3D MXene-CNTs/Ni composites hold excellent microwave absorption performance (-56.4 dB at only 2.4 mm). Ti3C2Tx MXene is widely regarded as a potential microwave absorber due to its dielectric multi-layered structure. However, missing magnetic loss capability of pure MXene leads to the unmatched electromagnetic parameters and unsatisfied impedance matching condition. Herein, with the inspiration from dielectric-magnetic synergy, this obstruction is solved by fabricating magnetic CNTs/Ni hetero-structure decorated MXene substrate via a facile in situ induced growth method. Ni2+ ions are successfully attached on the surface and interlamination of each MXene unit by intensive electrostatic adsorption. Benefiting from the possible "seed-germination" effect, the "seeds" Ni2+ grow into "buds" Ni nanoparticles and "stem" carbon nanotubes (CNTs) from the enlarged "soil" of MXene skeleton. Due to the improved impedance matching condition, the MXene-CNTs/Ni hybrid holds a superior microwave absorption performance of - 56.4 dB at only 2.4 mm thickness. Such a distinctive 3D architecture endows the hybrids: (i) a large-scale 3D magnetic coupling network in each dielectric unit that leading to the enhanced magnetic loss capability, (ii) a massive multi-heterojunction interface structure that resulting in the reinforced polarization loss capability, confirmed by the off-axis electron holography. These outstanding results provide novel ideas for developing magnetic MXene-based absorbers.
Collapse
Affiliation(s)
- Xiao Li
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China
- Department of Materials Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Wenbin You
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China
| | - Chunyang Xu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China
| | - Lei Wang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China
| | - Liting Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China
| | - Yuesheng Li
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China
- Department of Materials Science, Fudan University, Shanghai, 200438, People's Republic of China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China.
- Department of Materials Science, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
41
|
Xu P, Zhang R, Qian X, Li X, Zeng Q, You W, Zhang C, Zhang J, Che R. C/MnO@void@C with Triple Balances for Superior Microwave Absorption Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32037-32045. [PMID: 34185491 DOI: 10.1021/acsami.1c08555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is very promising and challenging to construct a yolk-shell structure with highly efficient microwave absorption (MA) performance through a simple fabrication process. Here, a novel C/MnO@void@C (MCC) yolk-shell structure has been successfully synthesized by one-step calcination without additional processing. The as-obtained MCC composites with tunable crystallinity degrees and hollowness can be obtained by treatment at various temperatures. The MCC composites treated at 700 °C (MCC-700) show an impressive MA performance, and the optimal reflection loss of -53.2 dB and an effective absorption bandwidth of 5.4 GHz can be obtained. This excellent performance results from multiple balance mechanisms. First, the regulated permittivity of MCC-700 due to proper crystallinity and hollowness is beneficial for the balance between dielectric loss (tan δε) and impedance match (Zim). Second, the optimal balance between the increasing polarization range and decreasing polarization intensity can be achieved, which is favorable for the improvement of the MA performance. Third, the multicore yolk-shell structure of MCC-700 is conducive to multiple scattering and continuous energy dissipation. Thus, our new findings provide a rational way for the utilization of yolk-shell structural manganese-based materials.
Collapse
Affiliation(s)
- Pingdi Xu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Ruixuan Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xiang Qian
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xiao Li
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Qingwen Zeng
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Wenbin You
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Chang Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jie Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, P. R. China
- Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
42
|
Xiang Z, Shi Y, Zhu X, Cai L, Lu W. Flexible and Waterproof 2D/1D/0D Construction of MXene-Based Nanocomposites for Electromagnetic Wave Absorption, EMI Shielding, and Photothermal Conversion. NANO-MICRO LETTERS 2021; 13:150. [PMID: 34170409 PMCID: PMC8233447 DOI: 10.1007/s40820-021-00673-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/31/2021] [Indexed: 05/11/2023]
Abstract
ABSTRACT High-performance electromagnetic wave absorption and electromagnetic interference (EMI) shielding materials with multifunctional characters have attracted extensive scientific and technological interest, but they remain a huge challenge. Here, we reported an electrostatic assembly approach for fabricating 2D/1D/0D construction of Ti3C2Tx/carbon nanotubes/Co nanoparticles (Ti3C2Tx/CNTs/Co) nanocomposites with an excellent electromagnetic wave absorption, EMI shielding efficiency, flexibility, hydrophobicity, and photothermal conversion performance. As expected, a strong reflection loss of -85.8 dB and an ultrathin thickness of 1.4 mm were achieved. Meanwhile, the high EMI shielding efficiency reached 110.1 dB. The excellent electromagnetic wave absorption and shielding performances were originated from the charge carriers, electric/magnetic dipole polarization, interfacial polarization, natural resonance, and multiple internal reflections. Moreover, a thin layer of polydimethylsiloxane rendered the hydrophilic hierarchical Ti3C2Tx/CNTs/Co hydrophobic, which can prevent the degradation/oxidation of the MXene in high humidity condition. Interestingly, the Ti3C2Tx/CNTs/Co film exhibited a remarkable photothermal conversion performance with high thermal cycle stability and tenability. Thus, the multifunctional Ti3C2Tx/CNTs/Co nanocomposites possessing a unique blend of outstanding electromagnetic wave absorption and EMI shielding, light-driven heating performance, and flexible water-resistant features were highly promising for the next-generation intelligent electromagnetic attenuation system. [Image: see text] HIGHLIGHTS The 2D/1D/0D Ti3C2Tx/carbon nanotubes/Co nanocomposite is successfully synthesized via an electrostatic assembly. Nanocomposites exhibit an excellent electromagnetic wave absorption and a remarkable electromagnetic interference shielding efficiency. The flexible, waterproof, and photothermal conversion performances are achieved. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40820-021-00673-9.
Collapse
Affiliation(s)
- Zhen Xiang
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Yuyang Shi
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Xiaojie Zhu
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Lei Cai
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Wei Lu
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China.
| |
Collapse
|