1
|
Li G, Zhang X, Wang Y, Liu X, Ren F, He J, He D, Zhao H. A type-I van der Waals heterostructure formed by monolayer WS 2 and trilayer PdSe 2. NANOSCALE 2024. [PMID: 39470993 DOI: 10.1039/d4nr02664k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Two-dimensional (2D) heterostructures, formed by stacking 2D semiconductors through the van der Waals force, have been extensively studied recently. However, the majority of the heterostructures discovered so far possess type-II interfaces that facilitate interlayer charge separation. Type-I interfaces, on the other hand, confine both electrons and holes in one layer, which is beneficial for optical applications that utilize electron-hole radiative recombination. So far, only a few type-I 2D heterostructures have been achieved, which has limited the construction of multilayer heterostructures with sophisticated band landscapes. Here, we report experimental evidence of a type-I interface between monolayer WS2 and trilayer PdSe2. Two-dimensional PdSe2 has emerged as a promising material for infrared optoelectronic and other applications. We fabricated the heterostructure by stacking an exfoliated monolayer WS2 flake on top of a trilayer PdSe2 film, synthesized by chemical vapor deposition. Photoluminescence spectroscopy measurements revealed that the WS2 exciton peak is significantly quenched in the heterostructure, confirming efficient excitation transfer from WS2 to PdSe2. Femtosecond transient absorption measurements with various pump/probe configurations showed that both electrons and holes photoexcited in the WS2 layer of the heterostructure can efficiently transfer to PdSe2, while neither type of carriers excited in PdSe2 can transfer to WS2. These experimental findings establish a type-I band alignment between monolayer WS2 and trilayer PdSe2. Our results further highlight PdSe2 as an important 2D material for constructing van der Waals heterostructures with emergent electronic and optoelectronic properties.
Collapse
Affiliation(s)
- Guili Li
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China.
| | - Xiaoxian Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China.
| | - Yongsheng Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China.
| | - XiaoJing Liu
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China.
| | - FangYing Ren
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China.
| | - Jiaqi He
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Dawei He
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China.
| | - Hui Zhao
- Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045, USA.
| |
Collapse
|
2
|
Zhang Z, Wu P, Liu J, Li Q, Hu L, Wu Y, Kong Q, Yuan X, Li X, Cai Y, Yuan L, Feng W. Conjugated Porous Organic Polymers Featuring Both Soft-Hard Combined Coordination Sites and Photoelectrochemical Properties for Palladium Capture and Subsequent Photocatalysis. Inorg Chem 2024; 63:18676-18688. [PMID: 39312639 DOI: 10.1021/acs.inorgchem.4c02440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Palladium (Pd) capture from high-level liquid waste for subsequent photocatalytic applications is desirable for the development of nuclear energy and the reutilization of valuable resources. Herein, we approach our design with a unique porous organic polymer containing thiazolo[5,4-d]thiazole units (denoted as TzPOP-OH). It possesses two potential soft-hard (N-O and S-O) combined coordination sites for Pd(II) coordination and features strong donor-acceptor repeating units and high planarity of linkage enforced by hydrogen bonds for subsequent photocatalysis. Accordingly, TzPOP-OH with three hydroxyl groups on the linkage exhibits a high Pd(II) capacity of 369 mg g-1 at 3 M HNO3, considerably surpassing those of the controlled polymer TzPOP without hydroxyl groups and most other reported materials. Additionally, TzPOP-OH boasts other merits, including outstanding acid tolerance, extraordinary radiation stability, good reusability, and remarkable selectivity. After palladium adsorption, Pd@TzPOP-OH demonstrates impressive photodegradation efficiency to reduce the concentration of rhodamine B in contaminated urban water from 10 to less than 0.1 ppm. This work provides a feasible approach to designing materials with both suitable coordination microenvironments and semiconductor properties for metal separation and photocatalysis.
Collapse
Affiliation(s)
- Zeqian Zhang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Pengcheng Wu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jiayi Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qing Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610061, China
| | - Liancheng Hu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yida Wu
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Qiongying Kong
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Xiangyang Yuan
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Xiaowei Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yimin Cai
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lihua Yuan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Wen Feng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
Yu Y, Xiong T, Zhou Z, Liu D, Liu YY, Yang J, Wei Z. Spectrum-Dependent Image Convolutional Processing via a Two-Dimensional Polarization-Sensitive Photodetector. NANO LETTERS 2024; 24:6788-6796. [PMID: 38781093 DOI: 10.1021/acs.nanolett.4c01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Currently, the improvement in the processing capacity of traditional processors considerably lags behind the demands of real-time image processing caused by the advancement of photodetectors and the widespread deployment of high-definition image sensors. Therefore, achieving real-time image processing at the sensor level has become a prominent research domain in the field of photodetector technology. This goal underscores the need for photodetectors with enhanced multifunctional integration capabilities than can perform real-time computations using optical or electrical signals. In this study, we employ an innovative p-type semiconductor GaTe0.5Se0.5 to construct a polarization-sensitive wide-spectral photodetector. Leveraging the wide-spectral photoresponse, we realize three-band imaging within a wavelength range of 390-810 nm. Furthermore, real-time image convolutional processing is enabled by configuring appropriate convolution kernels based on the polarization-sensitive photocurrents. The innovative design of the polarization-sensitive wide-spectral GaTe0.5Se0.5-based photodetector represents a notable contribution to the domain of real-time image perception and processing.
Collapse
Affiliation(s)
- Yali Yu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Xiong
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziqi Zhou
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Duanyang Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Yue-Yang Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Murastov G, Aslam MA, Leitner S, Tkachuk V, Plutnarová I, Pavlica E, Rodriguez RD, Sofer Z, Matković A. Multi-Layer Palladium Diselenide as a Contact Material for Two-Dimensional Tungsten Diselenide Field-Effect Transistors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:481. [PMID: 38470809 DOI: 10.3390/nano14050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Tungsten diselenide (WSe2) has emerged as a promising ambipolar semiconductor material for field-effect transistors (FETs) due to its unique electronic properties, including a sizeable band gap, high carrier mobility, and remarkable on-off ratio. However, engineering the contacts to WSe2 remains an issue, and high contact barriers prevent the utilization of the full performance in electronic applications. Furthermore, it could be possible to tune the contacts to WSe2 for effective electron or hole injection and consequently pin the threshold voltage to either conduction or valence band. This would be the way to achieve complementary metal-oxide-semiconductor devices without doping of the channel material.This study investigates the behaviour of two-dimensional WSe2 field-effect transistors with multi-layer palladium diselenide (PdSe2) as a contact material. We demonstrate that PdSe2 contacts favour hole injection while preserving the ambipolar nature of the channel material. This consequently yields high-performance p-type WSe2 devices with PdSe2 van der Waals contacts. Further, we explore the tunability of the contact interface by selective laser alteration of the WSe2 under the contacts, enabling pinning of the threshold voltage to the valence band of WSe2, yielding pure p-type operation of the devices.
Collapse
Affiliation(s)
- Gennadiy Murastov
- Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, Franz Josef Strasse 18, 8700 Leoben, Austria
| | - Muhammad Awais Aslam
- Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, Franz Josef Strasse 18, 8700 Leoben, Austria
| | - Simon Leitner
- Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, Franz Josef Strasse 18, 8700 Leoben, Austria
| | - Vadym Tkachuk
- Laboratory of Organic Matter Physics, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Iva Plutnarová
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Egon Pavlica
- Laboratory of Organic Matter Physics, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Raul D Rodriguez
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina ave. 30, 634034 Tomsk, Russia
| | - Zdenek Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Aleksandar Matković
- Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, Franz Josef Strasse 18, 8700 Leoben, Austria
| |
Collapse
|
5
|
Awasthi C, Khan A, Islam SS. PdSe 2/MoSe 2: a promising van der Waals heterostructure for field effect transistor application. NANOTECHNOLOGY 2024; 35:195202. [PMID: 38295411 DOI: 10.1088/1361-6528/ad2482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
The field-effect transistor (FET) is a fundamental component of semiconductors and the electronic industry. High on-current and mobility with layer-dependent features are required for outstanding FET channel material. Two-dimensional materials are advantageous over bulk materials owing to their higher mobility, high ON/OFF ratio, low tunneling current, and leakage problems. Moreover, two-dimensional heterostructures provide a better way to tune electrical properties. In this work, the two distinct possibilities of PdSe2/MoSe2heterostructure have been employed through mechanical exfoliation and analyzed their electrical response. These diffe approaches to heterostructure formation serve as crucial components of our investigation, allowing us to explore and evaluate the unique electronic properties arising from each design. This work demonstrates that the heterostructure possesses a better ON/OFF ratio of ∼5.78 × 105, essential in switching characteristics. Moreover, MoSe2provides a defect-free interface to PdSe2, resulting in a higher ON current of ∼10μA and mobility of ∼63.7 cm2V-1s-1, necessary for transistor applications. In addition, comprehending the process of charge transfer occurring at the interface between transition metal dichalcogenides is fundamental for advancing next-generation technologies. This work provides insights into the interface formed between the PdSe2and MoSe2that can be harnessed in transistor applications.
Collapse
Affiliation(s)
- Chetan Awasthi
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Afzal Khan
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou-310027, People's Republic of China
- Institute of Micro-/Nanotechnology and Precision Engineering, School of Mechanical Engineering, Zhejiang University, Hangzhou-310058, People's Republic of China
| | - S S Islam
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
6
|
Zhang Y, Tian H, Li H, Yoon C, Nelson RA, Li Z, Watanabe K, Taniguchi T, Smirnov D, Kawakami RK, Goldberger JE, Zhang F, Lau CN. Quantum octets in high mobility pentagonal two-dimensional PdSe 2. Nat Commun 2024; 15:761. [PMID: 38278796 PMCID: PMC10817936 DOI: 10.1038/s41467-024-44972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
Two-dimensional (2D) materials have drawn immense interests in scientific and technological communities, owing to their extraordinary properties and their tunability by gating, proximity, strain and external fields. For electronic applications, an ideal 2D material would have high mobility, air stability, sizable band gap, and be compatible with large scale synthesis. Here we demonstrate air stable field effect transistors using atomically thin few-layer PdSe2 sheets that are sandwiched between hexagonal BN (hBN), with large saturation current > 350 μA/μm, and high field effect mobilities of ~ 700 and 10,000 cm2/Vs at 300 K and 2 K, respectively. At low temperatures, magnetotransport studies reveal unique octets in quantum oscillations that persist at all densities, arising from 2-fold spin and 4-fold valley degeneracies, which can be broken by in-plane and out-of-plane magnetic fields toward quantum Hall spin and orbital ferromagnetism.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Haidong Tian
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Huaixuan Li
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Chiho Yoon
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Ryan A Nelson
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Ziling Li
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Dmitry Smirnov
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Roland K Kawakami
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Joshua E Goldberger
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Fan Zhang
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Chun Ning Lau
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Hilal M, Yang W, Hwang Y, Xie W. Tailoring MXene Thickness and Functionalization for Enhanced Room-Temperature Trace NO 2 Sensing. NANO-MICRO LETTERS 2024; 16:84. [PMID: 38214765 PMCID: PMC10786774 DOI: 10.1007/s40820-023-01316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
In this study, precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties, environmental stability, and gas-sensing performance. Utilizing a hybrid method involving high-pressure processing, stirring, and immiscible solutions, sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer. Functionalization control is achieved by defunctionalizing MXene at 650 °C under vacuum and H2 gas in a CVD furnace, followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD. Notably, the introduction of iodine, which has a larger atomic size, lower electronegativity, reduce shielding effect, and lower hydrophilicity (contact angle: 99°), profoundly affecting MXene. It improves the surface area (36.2 cm2 g-1), oxidation stability in aqueous/ambient environments (21 days/80 days), and film conductivity (749 S m-1). Additionally, it significantly enhances the gas-sensing performance, including the sensitivity (0.1119 Ω ppm-1), response (0.2% and 23% to 50 ppb and 200 ppm NO2), and response/recovery times (90/100 s). The reduced shielding effect of the -I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2. This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies.
Collapse
Affiliation(s)
- Muhammad Hilal
- Department of Physics, Dongguk University, Seoul, 04620, Republic of Korea
- Department of Control and Instrumentation Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Woochul Yang
- Department of Physics, Dongguk University, Seoul, 04620, Republic of Korea.
| | - Yongha Hwang
- Department of Control and Instrumentation Engineering, Korea University, Sejong, 30019, Republic of Korea.
| | - Wanfeng Xie
- Department of Physics, Dongguk University, Seoul, 04620, Republic of Korea.
- School of Electronics & Information, University- Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
8
|
Kumbhare LB, Udayan APM, Singla H, Sawant SN, Ruz P, Wadawale A, Bahadur J. Hydrogen-bonded linear chain assemblies of palladium(II)-selenoether complexes: solid state aggregates as templates for nano-structural Pd 17Se 15 leading to efficient electrocatalytic activity. Dalton Trans 2023. [PMID: 37997778 DOI: 10.1039/d3dt02170j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
A analogous series of 2-(3,5-dimethylpyrazol-1-yl)phenyl substituted selenoether complexes of palladium [PdCl2(RSeC6H4dmpz)]; (R = CH2COOH (1), CH2CH2COOH (2), and CH2CH2OH (3); dmpz = dimethylpyrazole) were ably synthesized in a facile manner and exhaustively characterized. Insight into molecular structures of these complexes was keenly probed through single crystal X-ray diffraction (XRD) analysis, unfolding the structural scaffolds and laying into molecular aggregation, availed through hydrogen bonding interactions borne out of tethered protic groups. The complexes were converted to capping free palladium selenide (Pd17Se15) nanoparticles through pyrolysis and evaluated for their electrocatalytic efficacy towards the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER) and methanol oxidation reaction (MOR) in alkaline medium. In an alkaline medium, PSNP1 (Pd17Se15) obtained from the hydrogen bonded aggregate of complex PdCl2L1 (1) produced good HER activity. PSNP1 had a little decrease in current density after 300 continuous cycles, which proves that the catalyst presents high stability in the recycling process. For the electrocatalytic oxidation of CH3OH, the electrocatalytic rate constant (k) obtained was 0.3 × 103 cm3 mol-1 s-1.
Collapse
Affiliation(s)
| | - Anu Prathap M Udayan
- Department of Metallurgical and Materials Engineering, Punjab Engineering College (Deemed to be University), Sector-12, Chandigarh 160012, India
| | - Hardik Singla
- Department of Metallurgical and Materials Engineering, Punjab Engineering College (Deemed to be University), Sector-12, Chandigarh 160012, India
| | - Shilpa N Sawant
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Priyanka Ruz
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Amey Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Jitendra Bahadur
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
9
|
Yan M, Jin Y, Voloshina E, Dedkov Y. Electronic Correlations in Fe xNi yPS 3 Van der Waals Materials: Insights from Angle-Resolved Photoelectron Spectroscopy and DFT. J Phys Chem Lett 2023; 14:9774-9779. [PMID: 37882477 DOI: 10.1021/acs.jpclett.3c02688] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Recently layered antiferromagnetic materials with different magnetic orderings attract increased attention. It was found that these properties can be preserved down to the monolayer limit opening large perspectives for their applications in (opto)spintronics and sensing, however, lacking the experimental results on electronic structure studies. Here the results of angle-resolved photoelectron spectroscopy (ARPES) studies accompanied by DFT calculations for FexNiyPS3 layered van der Waals (vdW) alloys are presented, addressing the effects of electronic correlations in these materials. It is demonstrated that in the case of FePS3 the top of the valence band is formed by the hybrid Fe 3d-S 3p states and is of pure S 3p character for NiPS3, respectively, whereas for the mixed Fe-Ni-based vdW alloy the electronic structure is a sum of contributions from the parent compounds. The obtained results give a clear understanding of the nature of the insulating state in studied MPX3 materials and pave the way on their applications in different areas.
Collapse
Affiliation(s)
- Mouhui Yan
- Department of Physics, Shanghai University, 99 Shangda Road, 200444 Shanghai, P. R. China
- State Key Laboratory of Advanced Special Steel & School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, 200444 Shanghai, P. R. China
| | - Yichen Jin
- Department of Physics, Shanghai University, 99 Shangda Road, 200444 Shanghai, P. R. China
- Department of Physics, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Elena Voloshina
- Department of Physics, Shanghai University, 99 Shangda Road, 200444 Shanghai, P. R. China
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Yuriy Dedkov
- Department of Physics, Shanghai University, 99 Shangda Road, 200444 Shanghai, P. R. China
| |
Collapse
|
10
|
Xiao F, Lei W, Wang W, Ma Y, Gong X, Ming X. Layer-dependent electronic structures and optical properties of two-dimensional PdSSe. Phys Chem Chem Phys 2023; 25:11827-11838. [PMID: 37067819 DOI: 10.1039/d3cp00022b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Two-dimensional (2D) layered palladium dichalcogenides PdX2 (X = S and Se) have attracted increasing interest due to their tunable electronic structure and abundant physicochemical properties. Recently, as the sister material of PdX2, PdSSe has received increasing attention and shows great promise for technological applications and fundamental research. In the present study, we focus on the layer-dependent geometry, electronic structure, and optical properties of PdSSe using first-principles calculations. The lattice shrinkage effect present in the 2D structure is suppressed with increasing number of layers. Attributed to the strong interlayer coupling interactions, the band gap decreases from 2.30 to 0.83 eV with increased thickness. Particularly, the dispersion of the band edges on the high symmetry path changes considerably from the monolayer to bilayer PdSSe, resulting in shifts of the conduction band minimum and valence band maximum. The multilayer PdSSe shows band convergence feature with multi-valley for the conduction band, which are maintained with reduced effective mass. Furthermore, the increasing number of layers drives a wider absorption range in the visible light region, and the light absorption capability increases from ∼10% to ∼30%. Meanwhile, the band edge positions of the multilayer PdSSe are more appropriate for photocatalytic water splitting. Our theoretical study reveals the enhanced valley convergence, conductivity and optical absorption performance of the few-layer PdSSe, which suggests its promising application in thermoelectric conversion, solar harvesting and photocatalysis.
Collapse
Affiliation(s)
- Feng Xiao
- College of Science, Guilin University of Technology, Guilin 541004, P. R. China.
- School of Physics, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Wen Lei
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China
| | - Wei Wang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Yiping Ma
- College of Science, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Xujia Gong
- College of Science, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Xing Ming
- College of Science, Guilin University of Technology, Guilin 541004, P. R. China.
- MOE Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, Key Laboratory of Low-dimensional Structural Physics and Application, Education Department of Guangxi Zhuang Autonomous Region, Guilin University of Technology, Guilin 541004, P. R. China
| |
Collapse
|
11
|
Li Y, Huang S, Peng S, Jia H, Pang J, Ibarlucea B, Hou C, Cao Y, Zhou W, Liu H, Cuniberti G. Toward Smart Sensing by MXene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206126. [PMID: 36517115 DOI: 10.1002/smll.202206126] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The Internet of Things era has promoted enormous research on sensors, communications, data fusion, and actuators. Among them, sensors are a prerequisite for acquiring the environmental information for delivering to an artificial data center to make decisions. The MXene-based sensors have aroused tremendous interest because of their extraordinary performances. In this review, the electrical, electronic, and optical properties of MXenes are first introduced. Next, the MXene-based sensors are discussed according to the sensing mechanisms such as electronic, electrochemical, and optical methods. Initially, biosensors are introduced based on chemiresistors and field-effect transistors. Besides, the wearable pressure sensor is demonstrated with piezoresistive devices. Third, the electrochemical methods include amperometry and electrochemiluminescence as examples. In addition, the optical approaches refer to surface plasmonic resonance and fluorescence resonance energy transfer. Moreover, the prospects are delivered of multimodal data fusion toward complicated human-like senses. Eventually, future opportunities for MXene research are conveyed in the new material discovery, structure design, and proof-of-concept devices.
Collapse
Affiliation(s)
- Yufen Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Shirong Huang
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
- Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Hao Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany
| | - Chongyang Hou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Yu Cao
- Key Laboratory of Modern Power System Simulation and Control and Renewable Energy Technology (Ministry of Education), Northeast Electric Power University, Jilin, 132012, China
- School of Electrical Engineering, Northeast Electric Power University, Jilin, 132012, China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
- State Key Laboratory of Crystal Materials, Center of Bio and Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan, 250100, China
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany
- Dresden Center for Computational Materials Science, Technische Universität Dresden, 01062, Dresden, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
12
|
Pang J, Peng S, Hou C, Zhao H, Fan Y, Ye C, Zhang N, Wang T, Cao Y, Zhou W, Sun D, Wang K, Rümmeli MH, Liu H, Cuniberti G. Applications of Graphene in Five Senses, Nervous System, and Artificial Muscles. ACS Sens 2023; 8:482-514. [PMID: 36656873 DOI: 10.1021/acssensors.2c02790] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Graphene remains of great interest in biomedical applications because of biocompatibility. Diseases relating to human senses interfere with life satisfaction and happiness. Therefore, the restoration by artificial organs or sensory devices may bring a bright future by the recovery of senses in patients. In this review, we update the most recent progress in graphene based sensors for mimicking human senses such as artificial retina for image sensors, artificial eardrums, gas sensors, chemical sensors, and tactile sensors. The brain-like processors are discussed based on conventional transistors as well as memristor related neuromorphic computing. The brain-machine interface is introduced for providing a single pathway. Besides, the artificial muscles based on graphene are summarized in the means of actuators in order to react to the physical world. Future opportunities remain for elevating the performances of human-like sensors and their clinical applications.
Collapse
Affiliation(s)
- Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center and Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Chongyang Hou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Hongbin Zhao
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co. Ltd., Xinwai Street 2, Beijing 100088, People's Republic of China
| | - Yingju Fan
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan 250022, China
| | - Chen Ye
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan 250022, China
| | - Nuo Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Shandong, Jinan 250022, China
| | - Ting Wang
- State Key Laboratory of Biobased Material and Green Papermaking and People's Republic of China School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, No. 3501 Daxue Road, Jinan 250353, People's Republic of China
| | - Yu Cao
- Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology (Ministry of Education) and School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
| | - Ding Sun
- School of Electrical and Computer Engineering, Jilin Jianzhu University, Changchun 130118, P. R. China
| | - Kai Wang
- School of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao 266000, China
| | - Mark H Rümmeli
- Leibniz Institute for Solid State and Materials Research Dresden, Dresden, D-01171, Germany.,College of Energy, Soochow Institute for Energy and Materials Innovations, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.,Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, Zabrze 41-819, Poland.,Institute for Complex Materials, IFW Dresden, 20 Helmholtz Strasse, Dresden 01069, Germany.,Center for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. Listopadu 15, Ostrava 708 33, Czech Republic
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China.,State Key Laboratory of Crystal Materials, Center of Bio & Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan 250100, China
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials and Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden 01069, Germany
| |
Collapse
|
13
|
Lee M, Kim TW, Park CY, Lee K, Taniguchi T, Watanabe K, Kim MG, Hwang DK, Lee YT. Graphene Bridge Heterostructure Devices for Negative Differential Transconductance Circuit Applications. NANO-MICRO LETTERS 2022; 15:22. [PMID: 36580180 PMCID: PMC9800667 DOI: 10.1007/s40820-022-01001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Two-dimensional van der Waals (2D vdW) material-based heterostructure devices have been widely studied for high-end electronic applications owing to their heterojunction properties. In this study, we demonstrate graphene (Gr)-bridge heterostructure devices consisting of laterally series-connected ambipolar semiconductor/Gr-bridge/n-type molybdenum disulfide as a channel material for field-effect transistors (FET). Unlike conventional FET operation, our Gr-bridge devices exhibit non-classical transfer characteristics (humped transfer curve), thus possessing a negative differential transconductance. These phenomena are interpreted as the operating behavior in two series-connected FETs, and they result from the gate-tunable contact capacity of the Gr-bridge layer. Multi-value logic inverters and frequency tripler circuits are successfully demonstrated using ambipolar semiconductors with narrow- and wide-bandgap materials as more advanced circuit applications based on non-classical transfer characteristics. Thus, we believe that our innovative and straightforward device structure engineering will be a promising technique for future multi-functional circuit applications of 2D nanoelectronics.
Collapse
Affiliation(s)
- Minjong Lee
- Department of Electrical and Computer Engineering, Inha University, Incheon, 22212, Republic of Korea
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Tae Wook Kim
- Center for Opto-Electronic Materials and Devices, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Chang Yong Park
- Department of Electrical and Computer Engineering, Inha University, Incheon, 22212, Republic of Korea
| | - Kimoon Lee
- Department of Physics, Kunsan National University, Gunsan, 54150, Republic of Korea
| | - Takashi Taniguchi
- Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| | - Kenji Watanabe
- Advanced Materials Laboratory, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| | - Min-Gu Kim
- Department of Electrical and Computer Engineering, Inha University, Incheon, 22212, Republic of Korea.
- Department of Information and Communication Engineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Do Kyung Hwang
- Center for Opto-Electronic Materials and Devices, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Division of Nanoscience and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| | - Young Tack Lee
- Department of Electrical and Computer Engineering, Inha University, Incheon, 22212, Republic of Korea.
- Department of Electronic Engineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
14
|
Dastgeer G, Nisar S, Shahzad ZM, Rasheed A, Kim D, Jaffery SHA, Wang L, Usman M, Eom J. Low-Power Negative-Differential-Resistance Device for Sensing the Selective Protein via Supporter Molecule Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204779. [PMID: 36373733 PMCID: PMC9811440 DOI: 10.1002/advs.202204779] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Van der Waals (vdW) heterostructures composed of atomically thin two-dimensional (2D) materials have more potential than conventional metal-oxide semiconductors because of their tunable bandgaps, and sensitivities. The remarkable features of these amazing vdW heterostructures are leading to multi-functional logic devices, atomically thin photodetectors, and negative differential resistance (NDR) Esaki diodes. Here, an atomically thin vdW stacking composed of p-type black arsenic (b-As) and n-type tin disulfide (n-SnS2 ) to build a type-III (broken gap) heterojunction is introduced, leading to a negative differential resistance device. Charge transport through the NDR device is investigated under electrostatic gating to achieve a high peak-to-valley current ratio (PVCR), which improved from 2.8 to 4.6 when the temperature is lowered from 300 to 100 K. At various applied-biasing voltages, all conceivable tunneling mechanisms that regulate charge transport are elucidated. Furthermore, the real-time response of the NDR device is investigated at various streptavidin concentrations down to 1 pm, operating at a low biasing voltage. Such applications of NDR devices may lead to the development of cutting-edge electrical devices operating at low power that may be employed as biosensors to detect a variety of target DNA (e.g., ct-DNA) and protein (e.g., the spike protein associated with COVID-19).
Collapse
Affiliation(s)
- Ghulam Dastgeer
- Department of Physics and AstronomySejong UniversitySeoul05006Korea
| | - Sobia Nisar
- Department of Electrical EngineeringSejong UniversitySeoul05006Korea
| | - Zafar Muhammad Shahzad
- Department of Chemical & Polymer EngineeringUniversity of Engineering and TechnologyLahore, Faisalabad Campus38000Pakistan
- SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan UniversitySuwon16419Korea
| | - Aamir Rasheed
- Department of Physics and Interdisciplinary Course of Physics and ChemistrySungkyunkwan UniversitySuwonGyeonggi‐do16419Korea
| | - Deok‐kee Kim
- Department of Electrical EngineeringSejong UniversitySeoul05006Korea
| | - Syed Hassan Abbas Jaffery
- HMC (Hybrid Materials Center)Department of Nanotechnology and Advanced Materials Engineeringand Graphene Research InstituteSejong UniversitySeoul05006Korea
| | - Liang Wang
- Department of BioinformaticsSchool of Medical Informatics and EngineeringXuzhou Medical UniversityXuzhou221006China
| | - Muhammad Usman
- Department of BioinformaticsSchool of Medical Informatics and EngineeringXuzhou Medical UniversityXuzhou221006China
| | - Jonghwa Eom
- Department of Physics and AstronomySejong UniversitySeoul05006Korea
| |
Collapse
|
15
|
Zheng J, Fu L, He Y, Li K, Lu Y, Xue J, Liu Y, Dong C, Chen C, Tang J. Fabrication and characterization of ZnO/Se 1-xTe x solar cells. FRONTIERS OF OPTOELECTRONICS 2022; 15:36. [PMID: 36637622 PMCID: PMC9756246 DOI: 10.1007/s12200-022-00040-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/26/2022] [Indexed: 06/16/2023]
Abstract
Selenium (Se) element is a promising light-harvesting material for solar cells because of the large absorption coefficient and prominent photoconductivity. However, the efficiency of Se solar cells has been stagnated for a long time owing to the suboptimal bandgap (> 1.8 eV) and the lack of a proper electron transport layer. In this work, we tune the bandgap of the absorber to the optimal value of Shockley-Queisser limit (1.36 eV) by alloying 30% Te with 70% Se. Simultaneously, ZnO electron transport layer is selected because of the proper band alignment, and the mild reaction at ZnO/Se0.7Te0.3 interface guarantees a good-quality heterojunction. Finally, a superior efficiency of 1.85% is achieved on ZnO/Se0.7Te0.3 solar cells.
Collapse
Affiliation(s)
- Jiajia Zheng
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- China-EU Institute for Clean and Renewable Energy (ICARE), Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liuchong Fu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuming He
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kanghua Li
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yue Lu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- China-EU Institute for Clean and Renewable Energy (ICARE), Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiayou Xue
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- China-EU Institute for Clean and Renewable Energy (ICARE), Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuxuan Liu
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chong Dong
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Chen
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- China-EU Institute for Clean and Renewable Energy (ICARE), Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
16
|
Hosseini B, Behbahani M, Dini G, Mohabatkar H, Keyhanfar M. Investigating the anti-streptococcal biofilm effect of ssDNA aptamer-silver nanoparticles complex on a titanium-based substrate. RSC Adv 2022; 12:24876-24886. [PMID: 36276899 PMCID: PMC9475424 DOI: 10.1039/d2ra04112j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022] Open
Abstract
Streptococcus mutans is a commensal and opportunistic pathogen that causes several diseases by forming a biofilm in humans and animals in many areas such as nasopharyngeal, cardiac valves, lungs, and oral cavity. Biofilms are very important in prosthetic infections associated with medical implants. The use of nanoparticles is one of the evolving fields in biofilm targeting. Silver nanoparticles can be used for biofilm targeting due to their inherent antimicrobial properties. Hybridization of nanoparticles with small molecules increases their biological properties and makes them multifunctional. The present investigation aimed to design an appropriate silver nanoparticles-aptamer complex that binds to the surface receptors of streptococcal strains. For this reason, silver nanoparticles with particle sizes in a range of 50 to 70 nm were synthesized and connected to a designed aptamer with a streptavidin-biotin linker. Then, the effect of the complex was investigated on the S. mutans biofilm formed on the surface of a medical-grade titanium substrate. The silver nanoparticles-aptamer complex at a concentration of 100 μg mL-1 after 48 h inhibited 43% of the biofilm formation and degraded 63% of the formed biofilm. Also, the cell availability reached 96% and the complex was stable in cell medium culture for 360 min. It was concluded that this complex could be a good candidate for removing the formed biofilms on the surface of titanium implants.
Collapse
Affiliation(s)
- Barumand Hosseini
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan Isfahan 81746-73441 Iran +98-31-37932342 +98-31-37934327
| | - Mandana Behbahani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan Isfahan 81746-73441 Iran +98-31-37932342 +98-31-37934327
| | - Ghasem Dini
- Department of Nanotechnology, Faculty of Chemistry, University of Isfahan Isfahan 81746-73441 Iran
| | - Hassan Mohabatkar
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan Isfahan 81746-73441 Iran +98-31-37932342 +98-31-37934327
| | - Mehrnaz Keyhanfar
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan Isfahan 81746-73441 Iran +98-31-37932342 +98-31-37934327
| |
Collapse
|
17
|
Walter LS, Axt A, Borchert JW, Kammerbauer T, Winterer F, Lenz J, Weber SAL, Weitz RT. Revealing and Controlling Energy Barriers and Valleys at Grain Boundaries in Ultrathin Organic Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200605. [PMID: 35905481 DOI: 10.1002/smll.202200605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
In organic electronics, local crystalline order is of critical importance for the charge transport. Grain boundaries between molecularly ordered domains are generally known to hamper or completely suppress charge transfer and detailed knowledge of the local electronic nature is critical for future minimization of such malicious defects. However, grain boundaries are typically hidden within the bulk film and consequently escape observation or investigation. Here, a minimal model system in form of monolayer-thin films with sub-nm roughness of a prototypical n-type organic semiconductor is presented. Since these films consist of large crystalline areas, the detailed energy landscape at single grain boundaries can be studied using Kelvin probe force microscopy. By controlling the charge-carrier density in the films electrostatically, the impact of the grain boundaries on charge transport in organic devices is modeled. First, two distinct types of grain boundaries are identified, namely energetic barriers and valleys, which can coexist within the same thin film. Their absolute height is found to be especially pronounced at charge-carrier densities below 1012 cm- 2 -the regime at which organic solar cells and light emitting diodes typically operate. Finally, processing conditions by which the type or energetic height of grain boundaries can be controlled are identified.
Collapse
Affiliation(s)
- Lisa S Walter
- Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
- I. Institute of Physics, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Amelie Axt
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - James W Borchert
- I. Institute of Physics, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Theresa Kammerbauer
- Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Felix Winterer
- Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Jakob Lenz
- Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Stefan A L Weber
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Institute of Physics, Johannes Gutenberg-Universität Mainz, 55122, Mainz, Germany
| | - R Thomas Weitz
- Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
- I. Institute of Physics, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
- Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| |
Collapse
|
18
|
Shahdeo D, Chauhan N, Majumdar A, Ghosh A, Gandhi S. Graphene-Based Field-Effect Transistor for Ultrasensitive Immunosensing of SARS-CoV-2 Spike S1 Antigen. ACS APPLIED BIO MATERIALS 2022; 5:3563-3572. [PMID: 35775242 PMCID: PMC9274923 DOI: 10.1021/acsabm.2c00503] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Coronavirus disease (COVID-19) is an infectious disease that has posed a global health challenge caused by the SARS-CoV-2 virus. Early management and diagnosis of SARS-CoV-2 are crucial for the timely treatment, traceability, and reduction of viral spread. We have developed a rapid method using a Graphene-based Field-Effect Transistor (Gr-FET) for the ultrasensitive detection of SARS-CoV-2 Spike S1 antigen (S1-Ag). The in-house developed antispike S1 antibody (S1-Ab) was covalently immobilized on the surface of a carboxy functionalized graphene channel using carbodiimide chemistry. Ultraviolet-visible spectroscopy, Fourier-Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), Optical Microscopy, Raman Spectroscopy, Scanning Electron Microscopy (SEM), Enzyme-Linked Immunosorbent Assays (ELISA), and device stability studies were conducted to characterize the bioconjugation and fabrication process of Gr-FET. In addition, the electrical response of the device was evaluated by monitoring the change in resistance caused by Ag-Ab interaction in real time. For S1-Ag, our Gr-FET devices were tested in the range of 1 fM to 1 μM with a limit of detection of 10 fM in the standard buffer. The fabricated devices are highly sensitive, specific, and capable of detecting low levels of S1-Ag.
Collapse
Affiliation(s)
- Deepshikha Shahdeo
- DBT-National
Institute of Animal Biotechnology (DBT-NIAB), Hyderabad 500032, Telangana, India
| | - Neha Chauhan
- Department
of Physics, Indian Institute of Science
(IISc), Bangalore 560012, India
- The
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Aniket Majumdar
- Department
of Physics, Indian Institute of Science
(IISc), Bangalore 560012, India
| | - Arindam Ghosh
- Department
of Physics, Indian Institute of Science
(IISc), Bangalore 560012, India
- Centre
for Nano Science and Engineering (CeNSE), Indian Institute of Science (IISc), Bangalore 560012, India
| | - Sonu Gandhi
- DBT-National
Institute of Animal Biotechnology (DBT-NIAB), Hyderabad 500032, Telangana, India
| |
Collapse
|
19
|
Yang P, Zha J, Gao G, Zheng L, Huang H, Xia Y, Xu S, Xiong T, Zhang Z, Yang Z, Chen Y, Ki DK, Liou JJ, Liao W, Tan C. Growth of Tellurium Nanobelts on h-BN for p-type Transistors with Ultrahigh Hole Mobility. NANO-MICRO LETTERS 2022; 14:109. [PMID: 35441245 PMCID: PMC9018950 DOI: 10.1007/s40820-022-00852-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/24/2022] [Indexed: 05/15/2023]
Abstract
The lack of stable p-type van der Waals (vdW) semiconductors with high hole mobility severely impedes the step of low-dimensional materials entering the industrial circle. Although p-type black phosphorus (bP) and tellurium (Te) have shown promising hole mobilities, the instability under ambient conditions of bP and relatively low hole mobility of Te remain as daunting issues. Here we report the growth of high-quality Te nanobelts on atomically flat hexagonal boron nitride (h-BN) for high-performance p-type field-effect transistors (FETs). Importantly, the Te-based FET exhibits an ultrahigh hole mobility up to 1370 cm2 V-1 s-1 at room temperature, that may lay the foundation for the future high-performance p-type 2D FET and metal-oxide-semiconductor (p-MOS) inverter. The vdW h-BN dielectric substrate not only provides an ultra-flat surface without dangling bonds for growth of high-quality Te nanobelts, but also reduces the scattering centers at the interface between the channel material and the dielectric layer, thus resulting in the ultrahigh hole mobility .
Collapse
Affiliation(s)
- Peng Yang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jiajia Zha
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China.
| | - Guoyun Gao
- Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Long Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Haoxin Huang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yunpeng Xia
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Songcen Xu
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Tengfei Xiong
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Zhuomin Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Zhengbao Yang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Dong-Keun Ki
- Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Juin J Liou
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Wugang Liao
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China.
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
20
|
Lei Z, Zhang X, Zhao Y, Wei A, Tao L, Yang Y, Zheng Z, Tao L, Yu P, Li J. Enhanced Raman scattering on two-dimensional palladium diselenide. NANOSCALE 2022; 14:4181-4187. [PMID: 35234226 DOI: 10.1039/d1nr07126b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) semiconductors with atomic layers, and a flat and active surface provide an attractive platform for the study of surface-enhanced Raman scattering (SERS). Many 2D layered materials, including graphene and transition metal dichalcogenide (TMD), have been exploited as potential Raman enhancers for SERS-based molecule sensing. Herein, atomically-thin palladium diselenide (PdSe2) used as a SERS substrate for molecule detection was systematically studied. Stable Raman enhancement for molecules such as rhodamine 6G (R6G), crystal violet (CV), and rhodamine B (RhB) on few-layer PdSe2 has been verified. A detection limit as low as 10-9 M and an enhancement factor of 105 for the R6G molecule on monolayer PdSe2 are achieved. With the insertion of a thin Al2O3 layer, the Raman spectra confirm the predominant charge transfer mechanism for the large Raman enhancement. Furthermore, the strong thickness-dependent properties, good in-plane anisotropy and excellent air-stability of Raman enhancement are also explored for 2D PdSe2. Our findings provide not only a promising Raman enhancement platform for sensing applications but also new insights into the chemical mechanism (CM) process of SERS.
Collapse
Affiliation(s)
- Zehong Lei
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Xinkuo Zhang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Yu Zhao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Aixiang Wei
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Lili Tao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Yibin Yang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Li Tao
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Peng Yu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Jingbo Li
- Guangdong Key Lab of Chip and Integration Technology, Institute of Semiconductors, South China Normal University, Guangzhou 510631, P.R. China
| |
Collapse
|
21
|
Pham PV, Bodepudi SC, Shehzad K, Liu Y, Xu Y, Yu B, Duan X. 2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. Chem Rev 2022; 122:6514-6613. [PMID: 35133801 DOI: 10.1021/acs.chemrev.1c00735] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A grand family of two-dimensional (2D) materials and their heterostructures have been discovered through the extensive experimental and theoretical efforts of chemists, material scientists, physicists, and technologists. These pioneering works contribute to realizing the fundamental platforms to explore and analyze new physical/chemical properties and technological phenomena at the micro-nano-pico scales. Engineering 2D van der Waals (vdW) materials and their heterostructures via chemical and physical methods with a suitable choice of stacking order, thickness, and interlayer interactions enable exotic carrier dynamics, showing potential in high-frequency electronics, broadband optoelectronics, low-power neuromorphic computing, and ubiquitous electronics. This comprehensive review addresses recent advances in terms of representative 2D materials, the general fabrication methods, and characterization techniques and the vital role of the physical parameters affecting the quality of 2D heterostructures. The main emphasis is on 2D heterostructures and 3D-bulk (3D) hybrid systems exhibiting intrinsic quantum mechanical responses in the optical, valley, and topological states. Finally, we discuss the universality of 2D heterostructures with representative applications and trends for future electronics and optoelectronics (FEO) under the challenges and opportunities from physical, nanotechnological, and material synthesis perspectives.
Collapse
Affiliation(s)
- Phuong V Pham
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Srikrishna Chanakya Bodepudi
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Khurram Shehzad
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Yuan Liu
- School of Physics and Electronics, Hunan University, Hunan 410082, China
| | - Yang Xu
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Bin Yu
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, California 90095-1569, United States
| |
Collapse
|
22
|
Zhang Y, Liu B, Liu Z, Li J. Research progress in synthesis and biological application of quantum dots. NEW J CHEM 2022. [DOI: 10.1039/d2nj02603a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum dots are an excellent choice for biomedical applications due to their special optical properties and quantum confinement effects. This paper reviews the research and application progress of several quantum...
Collapse
|