1
|
Liu T, Lv G, Liu M, Cui X, Liu H, Li H, Zhao C, Wang L, Guo J, Liao L. MOF-Derived Nitrogen-Rich Hollow Nanocages as a Sulfur Carrier for High-Voltage Aluminum Sulfur Batteries. ACS NANO 2024; 18:31559-31568. [PMID: 39475559 DOI: 10.1021/acsnano.4c13092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Aluminum-sulfur batteries (ASBs) are emerging as promising energy storage systems due to their safety, low cost, and high theoretical capacity. However, it remains a challenge to overcome voltage hysteresis and short cycle life in the sulfur/Al2S3 conversion reaction, which hinders the development of ASBs. Here, we studied a high-voltage ASB system based on sulfur oxidation in an AlCl3/urea electrolyte. Nitrogen-doped hollow nanocages (HNCs) synthesized from MOF precursors were rationally designed as sulfur/carbon composite electrodes (S@HNC), and the impact of the nitrogen species on the electrochemical performance of sulfur electrodes was systematically investigated. The S@HNC-900 achieved efficient conversion at 1.9 V, delivering a stable capacity of 197.3 mA h g-1 and a Coulombic efficiency of 93.28% after 100 cycles. Furthermore, the S@HNC-900 electrode exhibited exceptional rate capacity and 800th long-term cycling stability, retaining a capacity of 87.1 mA h g-1 at 500 mA g-1. Ex situ XPS and XRD characterizations elucidated the redox mechanism, revealing a four-electron transfer process (S/AlSCl7) at the S@HNC-900 electrode. Density functional theory calculations demonstrated that pyridinic nitrogen-enriched HNC-900 significantly enhanced the sulfur conversion reaction and facilitated the adsorption of sulfur intermediates (SCl3+) on the carbon interface. This work provides critical insights into the high-voltage sulfur redox mechanism and establishes a foundation for the rational design of carbon-based electrocatalysts for the enhancement of ASB performance.
Collapse
Affiliation(s)
- Tianming Liu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
- School of Science, China University of Geosciences, Beijing 100083, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100140, China
| | - Guocheng Lv
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Meng Liu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Xiaoya Cui
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Hao Liu
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Haodong Li
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Changchun Zhao
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Longfei Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100140, China
| | - Juchen Guo
- Department of Chemical and Environmental Engineering, Materials Science and Engineering Program, University of California, Riverside, California 92521, United States
| | - Libing Liao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
2
|
Yao W, Liao K, Lai T, Sul H, Manthiram A. Rechargeable Metal-Sulfur Batteries: Key Materials to Mechanisms. Chem Rev 2024; 124:4935-5118. [PMID: 38598693 DOI: 10.1021/acs.chemrev.3c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Rechargeable metal-sulfur batteries are considered promising candidates for energy storage due to their high energy density along with high natural abundance and low cost of raw materials. However, they could not yet be practically implemented due to several key challenges: (i) poor conductivity of sulfur and the discharge product metal sulfide, causing sluggish redox kinetics, (ii) polysulfide shuttling, and (iii) parasitic side reactions between the electrolyte and the metal anode. To overcome these obstacles, numerous strategies have been explored, including modifications to the cathode, anode, electrolyte, and binder. In this review, the fundamental principles and challenges of metal-sulfur batteries are first discussed. Second, the latest research on metal-sulfur batteries is presented and discussed, covering their material design, synthesis methods, and electrochemical performances. Third, emerging advanced characterization techniques that reveal the working mechanisms of metal-sulfur batteries are highlighted. Finally, the possible future research directions for the practical applications of metal-sulfur batteries are discussed. This comprehensive review aims to provide experimental strategies and theoretical guidance for designing and understanding the intricacies of metal-sulfur batteries; thus, it can illuminate promising pathways for progressing high-energy-density metal-sulfur battery systems.
Collapse
Affiliation(s)
- Weiqi Yao
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kameron Liao
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tianxing Lai
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyunki Sul
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Arumugam Manthiram
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Xu C, Diemant T, Mariani A, Di Pietro ME, Mele A, Liu X, Passerini S. Locally Concentrated Ionic Liquid Electrolytes for Wide-Temperature-Range Aluminum-Sulfur Batteries. Angew Chem Int Ed Engl 2024; 63:e202318204. [PMID: 38244210 DOI: 10.1002/anie.202318204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Aluminum-sulfur (Al-S) batteries are promising energy storage devices due to their high theoretical capacity, low cost, and high safety. However, the high viscosity and inferior ion transport of conventionally used ionic liquid electrolytes (ILEs) limit the kinetics of Al-S batteries, especially at sub-zero temperatures. Herein, locally concentrated ionic liquid electrolytes (LCILE) formed via diluting the ILEs with non-solvating 1,2-difluorobenzene (dFBn) co-solvent are proposed for wide-temperature-range Al-S batteries. The addition of dFBn effectively promotes the fluidity and ionic conductivity without affecting the AlCl4 - /Al2 Cl7 - equilibrium, which preserves the reversible stripping/plating of aluminum and further promotes the overall kinetics of Al-S batteries. As a result, Al-S cells employing the LCILE exhibit higher specific capacity, better cyclability, and lower polarization with respect to the neat ILE in a wide temperature range from -20 to 40 °C. For instance, Al-S batteries employing the LCILE sustain a remarkable capacity of 507 mAh g-1 after 300 cycles at 20 °C, while only 229 mAh g-1 is delivered with the dFBn-free electrolyte under the same condition. This work demonstrates the favorable use of LCILEs for wide-temperature Al-S batteries.
Collapse
Affiliation(s)
- Cheng Xu
- Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstraße 11, D-89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT) P.O. Box 3640, D-76021, Karlsruhe, Germany
| | - Thomas Diemant
- Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstraße 11, D-89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT) P.O. Box 3640, D-76021, Karlsruhe, Germany
| | | | - Maria Enrica Di Pietro
- Department of Chemistry Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, I-20133, Italy
| | - Andrea Mele
- Department of Chemistry Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, I-20133, Italy
| | - Xu Liu
- Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstraße 11, D-89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT) P.O. Box 3640, D-76021, Karlsruhe, Germany
| | - Stefano Passerini
- Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstraße 11, D-89081, Ulm, Germany
- Karlsruhe Institute of Technology (KIT) P.O. Box 3640, D-76021, Karlsruhe, Germany
- Chemistry Department, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185, Rome, Italy
| |
Collapse
|
4
|
Faheem M, Hussain A, Ali M, Aziz MA. Recent Theoretical and Experimental Advancements of Aluminum-Sulfur Batteries. CHEM REC 2024; 24:e202300268. [PMID: 37874033 DOI: 10.1002/tcr.202300268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/02/2023] [Indexed: 10/25/2023]
Abstract
Aluminum-sulfur batteries (AlSBs) exhibit significant potential as energy storage systems due to their notable attributes, including a high energy density, cost-effectiveness, and abundant availability of aluminum and sulfur. In order to commercialize AlSBs, an understanding of their working principles is necessary. In this review, we examine the current advancements in cathodes, both in theory and practice, as well as the progress made in aqueous and nonaqueous electrolytes. We also explore the modifications made to separators and the theoretical understanding of problems associated with AlSBs. Furthermore, we discuss future research directions aimed at resolving these issues. Our aim is to summarize the current progress in AlSBs and, based on recent progress and understanding of the mechanism, help design a battery to overcome the challenges that such batteries have been facing.
Collapse
Affiliation(s)
- Muhammad Faheem
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261, Dhahran, Saudi Arabia
| | - Arshad Hussain
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261, Dhahran, Saudi Arabia
| | - Muhammad Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261, Dhahran, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, 31261, Dhahran, Saudi Arabia
| |
Collapse
|
5
|
Xu C, Zarrabeitia M, Li Y, Biskupek J, Kaiser U, Liu X, Passerini S. Three-Dimensional Nitrogen-Doped Carbonaceous Networks Anchored with Cobalt as Separator Modification Layers for Low-Polarization and Long-Lifespan Aluminum-Sulfur Batteries. ACS NANO 2023; 17:25234-25242. [PMID: 38063178 DOI: 10.1021/acsnano.3c08476] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Aluminum-sulfur (Al-S) batteries have attracted extensive interest due to their high theoretical energy density, inherent safety, and low cost. However, severe polarization and poor cycling performance significantly limit the development of Al-S batteries. Herein, three-dimensional (3D) nitrogen-doped carbonaceous networks anchored with cobalt (Co@CMel-ZIF) is proposed as a separator modification layer to mitigate these issues, prepared via carbonizations of a mixture of ZIF-7, melamine, and CoCl2. It exhibits a 3D network structure with a moderate surface area and high average pore diameter, which is demonstrated to be effective in adsorbing the aluminum polysulfides and hindering the mobility of polysulfides across the separator for enhanced cyclic stability of Al-S batteries. Meanwhile, Co@CMel-ZIF are characterized by abundant catalytic pyridinic-N and Co-Nx active sites that effectively eliminate the barrier of sulfides' conversion and thereby facilitate the polarization reduction. As a result, Al-S cells based on the separator modified with Co@CMel-ZIF exhibit a low voltage polarization of 0.47 V under the current density of 50 mA g-1 at 20 °C and a high discharge specific capacity of 503 mAh g-1 after 150 cycles. In contrast, the cell employing a bare separator exhibits a polarization of 1.01 V and a discharge capacity of 300 mAh g-1 after 70 cycles under the same conditions. This work demonstrates that modifying the separators is a promising strategy to mitigate the high polarization and poor cyclability of Al-S batteries.
Collapse
Affiliation(s)
- Cheng Xu
- Helmholtz Institute Ulm (HIU), Helmholtzstraße 11, D-89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021 Karlsruhe, Germany
| | - Maider Zarrabeitia
- Helmholtz Institute Ulm (HIU), Helmholtzstraße 11, D-89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021 Karlsruhe, Germany
| | - Yueliang Li
- Helmholtz Institute Ulm (HIU), Helmholtzstraße 11, D-89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021 Karlsruhe, Germany
- Electron Microscopy Group of Materials Science, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Johannes Biskupek
- Electron Microscopy Group of Materials Science, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Ute Kaiser
- Electron Microscopy Group of Materials Science, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Xu Liu
- Helmholtz Institute Ulm (HIU), Helmholtzstraße 11, D-89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021 Karlsruhe, Germany
| | - Stefano Passerini
- Helmholtz Institute Ulm (HIU), Helmholtzstraße 11, D-89081 Ulm, Germany
- Karlsruhe Institute of Technology (KIT), P.O. Box 3640, D-76021 Karlsruhe, Germany
- Chemistry Department, Sapienza University, Piazzale A. Moro 5, I-00185 Rome, Italy
| |
Collapse
|
6
|
Meng P, Huang J, Yang Z, Jiang M, Wang Y, Zhang W, Zhang J, Sun B, Fu C. Air-Stable Binary Hydrated Eutectic Electrolytes with Unique Solvation Structure for Rechargeable Aluminum-Ion Batteries. NANO-MICRO LETTERS 2023; 15:188. [PMID: 37515609 PMCID: PMC10387020 DOI: 10.1007/s40820-023-01160-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/20/2023] [Indexed: 07/31/2023]
Abstract
Aluminum-ion batteries (AIBs) have been highlighted as a potential alternative to lithium-ion batteries for large-scale energy storage due to the abundant reserve, light weight, low cost, and good safety of Al. However, the development of AIBs faces challenges due to the usage of AlCl3-based ionic liquid electrolytes, which are expensive, corrosive, and sensitive to humidity. Here, we develop a low-cost, non-corrosive, and air-stable hydrated eutectic electrolyte composed of aluminum perchlorate nonahydrate and methylurea (MU) ligand. Through optimizing the molar ratio to achieve the unique solvation structure, the formed Al(ClO4)3·9H2O/MU hydrated deep eutectic electrolyte (AMHEE) with an average coordination number of 2.4 can facilely realize stable and reversible deposition/stripping of Al. When combining with vanadium oxide nanorods positive electrode, the Al-ion full battery delivers a high discharge capacity of 320 mAh g-1 with good capacity retention. The unique solvation structure with a low desolvation energy of the AMHEE enables Al3+ insertion/extraction during charge/discharge processes, which is evidenced by in situ synchrotron radiation X-ray diffraction. This work opens a new pathway of developing low-cost, safe, environmentally friendly and high-performance electrolytes for practical and sustainable AIBs.
Collapse
Affiliation(s)
- Pengyu Meng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jian Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Zhaohui Yang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Min Jiang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yibo Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wei Zhang
- Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH, Surrey, UK
| | - Jiao Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Baode Sun
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Chaopeng Fu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
7
|
Deng R, Ke B, Xie Y, Cheng S, Zhang C, Zhang H, Lu B, Wang X. All-Solid-State Thin-Film Lithium-Sulfur Batteries. NANO-MICRO LETTERS 2023; 15:73. [PMID: 36971905 PMCID: PMC10043110 DOI: 10.1007/s40820-023-01064-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Lithium-sulfur (Li-S) system coupled with thin-film solid electrolyte as a novel high-energy micro-battery has enormous potential for complementing embedded energy harvesters to enable the autonomy of the Internet of Things microdevice. However, the volatility in high vacuum and intrinsic sluggish kinetics of S hinder researchers from empirically integrating it into all-solid-state thin-film batteries, leading to inexperience in fabricating all-solid-state thin-film Li-S batteries (TFLSBs). Herein, for the first time, TFLSBs have been successfully constructed by stacking vertical graphene nanosheets-Li2S (VGs-Li2S) composite thin-film cathode, lithium-phosphorous-oxynitride (LiPON) thin-film solid electrolyte, and Li metal anode. Fundamentally eliminating Li-polysulfide shuttle effect and maintaining a stable VGs-Li2S/LiPON interface upon prolonged cycles have been well identified by employing the solid-state Li-S system with an "unlimited Li" reservoir, which exhibits excellent long-term cycling stability with a capacity retention of 81% for 3,000 cycles, and an exceptional high temperature tolerance up to 60 °C. More impressively, VGs-Li2S-based TFLSBs with evaporated-Li thin-film anode also demonstrate outstanding cycling performance over 500 cycles with a high Coulombic efficiency of 99.71%. Collectively, this study presents a new development strategy for secure and high-performance rechargeable all-solid-state thin-film batteries.
Collapse
Affiliation(s)
- Renming Deng
- College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Bingyuan Ke
- College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Yonghui Xie
- College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Shoulin Cheng
- College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Congcong Zhang
- College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Hong Zhang
- College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou, 350108, People's Republic of China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, People's Republic of China
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou, 213000, People's Republic of China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, 410082, People's Republic of China.
| | - Xinghui Wang
- College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou, 350108, People's Republic of China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, People's Republic of China.
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou, 213000, People's Republic of China.
| |
Collapse
|
8
|
Yang Z, Huang X, Meng P, Jiang M, Wang Y, Yao Z, Zhang J, Sun B, Fu C. Phenoxazine Polymer-based p-type Positive Electrode for Aluminum-ion Batteries with Ultra-long Cycle Life. Angew Chem Int Ed Engl 2023; 62:e202216797. [PMID: 36545849 DOI: 10.1002/anie.202216797] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Aluminum-ion batteries (AIBs) are a promising candidate for large-scale energy storage due to the abundant reserves, low cost, good safety, and high theoretical capacity of Al. However, AIBs with inorganic positive electrodes still suffer from sluggish kinetics and structural collapse upon cycling. Herein, we propose a novel p-type poly(vinylbenzyl-N-phenoxazine) (PVBPX) positive electrode for AIBs. The dual active sites enable PVBPX to deliver a high capacity of 133 mAh g-1 at 0.2 A g-1 . More impressively, the expanded π-conjugated construction, insolubility, and anionic redox chemistry without bond rearrangement of PVBPX for AIBs contribute to an amazing ultra-long lifetime of 50000 cycles. The charge storage mechanism is that the AlCl4 - ions can reversibly coordinate/dissociate with the N and O sites in PVBPX sequentially, which is evidenced by both experimental and theoretical results. These findings establish a foundation to advance organic AIBs for large-scale energy storage.
Collapse
Affiliation(s)
- Zhaohui Yang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaobing Huang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, P. R. China
| | - Pengyu Meng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Min Jiang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yibo Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhenpeng Yao
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiao Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Baode Sun
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chaopeng Fu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
9
|
Kumar S, Rama P, Yang G, Lieu WY, Chinnadurai D, Seh ZW. Additive-Driven Interfacial Engineering of Aluminum Metal Anode for Ultralong Cycling Life. NANO-MICRO LETTERS 2022; 15:21. [PMID: 36580172 PMCID: PMC9800684 DOI: 10.1007/s40820-022-01000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Rechargeable Al batteries (RAB) are promising candidates for safe and environmentally sustainable battery systems with low-cost investments. However, the currently used aluminum chloride-based electrolytes present a significant challenge to commercialization due to their corrosive nature. Here, we report for the first time, a novel electrolyte combination for RAB based on aluminum trifluoromethanesulfonate (Al(OTf)3) with tetrabutylammonium chloride (TBAC) additive in diglyme. The presence of a mere 0.1 M of TBAC in the Al(OTf)3 electrolyte generates the charge carrying electrochemical species, which forms the basis of reaction at the electrodes. TBAC reduces the charge transfer resistance and the surface activation energy at the anode surface and also augments the dissociation of Al(OTf)3 to generate the solid electrolyte interphase components. Our electrolyte's superiority directly translates into reduced anodic overpotential for cells that ran for 1300 cycles in Al plating/stripping tests, the longest cycling life reported to date. This unique combination of salt and additive is non-corrosive, exhibits a high flash point and is cheaper than traditionally reported RAB electrolyte combinations, which makes it commercially promising. Through this report, we address a major roadblock in the commercialization of RAB and inspire equivalent electrolyte fabrication approaches for other metal anode batteries.
Collapse
Affiliation(s)
- Sonal Kumar
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Prasad Rama
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41125, Gothenburg, Sweden
| | - Gaoliang Yang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Wei Ying Lieu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Deviprasath Chinnadurai
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore.
| |
Collapse
|