1
|
Gao S, Lian K, Wang X, Liu X, Abdukayum A, Kong Q, Hu G. Recent Achievements in Heterogeneous Bimetallic Atomically Dispersed Catalysts for Zn-Air Batteries: A Minireview. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406776. [PMID: 39363812 DOI: 10.1002/smll.202406776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Rechargeable Zn-air batteries (ZABs) hold promise as the next-generation energy-storage devices owing to their affordability, environmental friendliness, and safety. However, cathodic catalysts are easily inactivated in prolonged redox potential environments, resulting in inadequate energy efficiency and poor cycle stability. To address these challenges, anodic active sites require multiple-atom combinations, that is, ensembles of metals. Heterogeneous bimetallic atomically dispersed catalysts (HBADCs), consisting of heterogeneous isolated single atoms and atomic pairs, are expected to synergistically boost the cyclic oxygen reduction and evolution reactions of ZABs owing to their tuneable microenvironments. This minireview revisits recent achievements in HBADCs for ZABs. Coordination environment engineering and catalytic substrate structure optimization strategies are summarized to predict the innovation direction for HBADCs in ZAB performance enhancement. These HBADCs are divided into ferrous and nonferrous dual sites with unique microenvironments, including synergistic effects, ion modulation, electronic coupling, and catalytic activity. Finally, conclusions and perspectives relating to future challenges and potential opportunities are provided to optimise the performance of ZABs.
Collapse
Affiliation(s)
- Sanshuang Gao
- Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Kang Lian
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Xinzhong Wang
- Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Abdukader Abdukayum
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, China
| | - Qingquan Kong
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| |
Collapse
|
2
|
Qiu D, Wang H, Ma T, Huang J, Meng Z, Fan D, Bowen CR, Lu H, Liu Y, Chandrasekaran S. Promoting Electrocatalytic Oxygen Reactions Using Advanced Heterostructures for Rechargeable Zinc-Air Battery Applications. ACS NANO 2024; 18:21651-21684. [PMID: 39129497 PMCID: PMC11342935 DOI: 10.1021/acsnano.4c02289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
In order to facilitate electrochemical oxygen reactions in electrically rechargeable zinc-air batteries (ZABs), there is a need to develop innovative approaches for efficient oxygen electrocatalysts. Due to their reliability, high energy density, material abundance, and ecofriendliness, rechargeable ZABs hold promise as next-generation energy storage and conversion devices. However, the large-scale application of ZABs is currently hindered by the slow kinetics of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). However, the development of heterostructure-based electrocatalysts has the potential to surpass the limitations imposed by the intrinsic properties of a single material. This Account begins with an explanation of the configurations of ZABs and the fundamentals of the oxygen electrochemistry of the air electrode. Then, we summarize recent progress with respect to the variety of heterostructures that exploit bifunctional electrocatalytic reactions and overview their impact on ZAB performance. The range of heterointerfacial engineering strategies for improving the ORR/OER and ZAB performance includes tailoring the surface chemistry, dimensionality of catalysts, interfacial charge transfer, mass and charge transport, and morphology. We highlight the multicomponent design approaches that take these features into account to create advanced highly active bifunctional catalysts. Finally, we discuss the challenges and future perspectives on this important topic that aim to enhance the bifunctional activity and performance of zinc-air batteries.
Collapse
Affiliation(s)
- Dingrong Qiu
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Huihui Wang
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Tingting Ma
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Jiangdu Huang
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Zhen Meng
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Dayong Fan
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Chris R. Bowen
- Department
of Mechanical Engineering, University of
Bath, BA2 7AY Bath, U.K.
| | - Huidan Lu
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Yongping Liu
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| | - Sundaram Chandrasekaran
- Guangxi
Key Laboratory of Electrochemical and Magneto-chemical, Functional
Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
- Guangxi
Colleges and Universities Key Laboratory of Surface and Interface
Electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P.R. China
| |
Collapse
|
3
|
Yang Y, Yao X, Xuan Z, Chen X, Zhang Y, Huang T, Shi M, Chen Y, Lan YQ. Porous crystalline conjugated macrocyclic materials and their energy storage applications. MATERIALS HORIZONS 2024; 11:3747-3763. [PMID: 38895771 DOI: 10.1039/d4mh00313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Porous crystalline conjugated macrocyclic materials (CMMs) possess high porosity, tunable structure/function and efficient charge transport ability owing to their planar macrocyclic conjugated π-electron system, which make them promising candidates for applications in energy storage. In this review, we thoroughly summarize the timely development of porous crystalline CMMs in energy storage related fields. Specifically, we summarize and discuss their structures and properties. In addition, their energy storage applications, such as lithium ion batteries, lithium sulfur batteries, sodium ion batteries, potassium ion batteries, Li-CO2 batteries, Li-O2 batteries, Zn-air batteries, supercapacitors and triboelectric nanogenerators, are also discussed. Finally, we present the existing challenges and future prospects. We hope this review will inspire the development of advanced energy storage materials based on porous crystalline CMMs.
Collapse
Affiliation(s)
- Yiwen Yang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Xiaoman Yao
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Zhe Xuan
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Xuanxu Chen
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Yuluan Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Taoping Huang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Mingjin Shi
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Yifa Chen
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Ying J, Yin R, Zhao Z, Zhang X, Feng W, Peng J, Liang C. Hierarchical porous carbon materials for lithium storage: preparation, modification, and applications. NANOTECHNOLOGY 2024; 35:332003. [PMID: 38744256 DOI: 10.1088/1361-6528/ad4b21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Secondary battery as an efficient energy conversion device has been highly attractive for alleviating the energy crisis and environmental pollution. Hierarchical porous carbon (HPC) materials with multiple sizes pore channels are considered as promising materials for energy conversion and storage applications, due to their high specific surface area and excellent electrical conductivity. Although many reviews have reported on carbon materials for different fields, systematic summaries about HPC materials for lithium storage are still rare. In this review, we first summarize the main preparation methods of HPC materials, including hard template method, soft template method, and template-free method. The modification methods including porosity and morphology tuning, heteroatom doping, and multiphase composites are introduced systematically. Then, the recent advances in HPC materials on lithium storage are summarized. Finally, we outline the challenges and future perspectives for the application of HPC materials in lithium storage.
Collapse
Affiliation(s)
- Jiaping Ying
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ruilian Yin
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zixu Zhao
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiaoyu Zhang
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Wen Feng
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jian Peng
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2522, Australia
| | - Chu Liang
- Zhejiang Carbon Neutral Innovation Institute & College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
5
|
Qiu J, Duan Y, Li S, Zhao H, Ma W, Shi W, Lei Y. Insights into Nano- and Micro-Structured Scaffolds for Advanced Electrochemical Energy Storage. NANO-MICRO LETTERS 2024; 16:130. [PMID: 38393483 PMCID: PMC10891041 DOI: 10.1007/s40820-024-01341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/30/2023] [Indexed: 02/25/2024]
Abstract
Adopting a nano- and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy storage devices at all technology readiness levels. Due to various challenging issues, especially limited stability, nano- and micro-structured (NMS) electrodes undergo fast electrochemical performance degradation. The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement, even though it only occupies complementary and facilitating components for the main mechanism. However, extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies. This review will aim at highlighting these NMS scaffold design strategies, summarizing their corresponding strengths and challenges, and thereby outlining the potential solutions to resolve these challenges, design principles, and key perspectives for future research in this field. Therefore, this review will be one of the earliest reviews from this viewpoint.
Collapse
Affiliation(s)
- Jiajia Qiu
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
- Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China
| | - Yu Duan
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Shaoyuan Li
- Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China
| | - Huaping Zhao
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany
| | - Wenhui Ma
- Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, People's Republic of China.
- School of Science and Technology, Pu'er University, Pu'er, 665000, People's Republic of China.
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Yong Lei
- Fachgebiet Angewandte Nanophysik, Institut Für Physik and IMN MacroNano, Technische Universität Ilmenau, 98693, Ilmenau, Germany.
| |
Collapse
|
6
|
Chen X, Zhang Y, Chen C, Li H, Lin Y, Yu K, Nan C, Chen C. Atomically Dispersed Ruthenium Catalysts with Open Hollow Structure for Lithium-Oxygen Batteries. NANO-MICRO LETTERS 2023; 16:27. [PMID: 37989893 PMCID: PMC10663429 DOI: 10.1007/s40820-023-01240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/05/2023] [Indexed: 11/23/2023]
Abstract
Lithium-oxygen battery with ultra-high theoretical energy density is considered a highly competitive next-generation energy storage device, but its practical application is severely hindered by issues such as difficult decomposition of discharge products at present. Here, we have developed N-doped carbon anchored atomically dispersed Ru sites cathode catalyst with open hollow structure (h-RuNC) for Lithium-oxygen battery. On one hand, the abundance of atomically dispersed Ru sites can effectively catalyze the formation and decomposition of discharge products, thereby greatly enhancing the redox kinetics. On the other hand, the open hollow structure not only enhances the mass activity of atomically dispersed Ru sites but also improves the diffusion efficiency of catalytic molecules. Therefore, the excellent activity from atomically dispersed Ru sites and the enhanced diffusion from open hollow structure respectively improve the redox kinetics and cycling stability, ultimately achieving a high-performance lithium-oxygen battery.
Collapse
Affiliation(s)
- Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Yu Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Chang Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Huinan Li
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yuran Lin
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Ke Yu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Caiyun Nan
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
7
|
Wang X, Xu X, Nie Y, Wang R, Zou J. Electronic-State Modulation of Metallic Co-Assisted Co 7 Fe 3 Alloy Heterostructure for Highly Efficient and Stable Overall Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301961. [PMID: 37219005 PMCID: PMC10401179 DOI: 10.1002/advs.202301961] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Indexed: 05/24/2023]
Abstract
Manipulating electronic structure of alloy-based electrocatalysts can eagerly regulate its catalytic efficiency and corrosion resistance for water splitting and fundamentally understand the catalytic mechanisms for oxygen/hydrogen evolution reactions (OER/HER). Herein, the metallic Co-assisted Co7 Fe3 alloy heterojunction (Co7 Fe3 /Co) embeds in a 3D honeycomb-like graphitic carbon is purposely constructed as a bifunctional catalyst for overall water splitting. As-marked Co7 Fe3 /Co-600 displays the excellent catalytic activities in alkaline media with low overpotentials of 200 mV for OER and 68 mV for HER at 10 mA cm-2 . Theoretical calculations reveal the electronic redistribution after coupling Co with Co7 Fe3 , which likely forms the electron-rich state over interfaces and the electron-delocalized state at Co7 Fe3 alloy. This process changes the d-band center position of Co7 Fe3 /Co and optimizes the affinity of catalyst surface to intermediates, thus promoting the intrinsic OER/HER activities. For overall water splitting, the electrolyzer only requires a cell voltage of 1.50 V to achieve 10 mA cm-2 and dramatically retains 99.1% of original activity after 100 h of continuous operation. This work proposes an insight into modulation of electronic state in alloy/metal heterojunctions and explores a new path to construct more competitive electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Xinyu Wang
- Key Laboratory of Functional Inorganic Material ChemistryMinistry of Education of the People's Republic of ChinaSchool of Chemistry and Materials ScienceHeilongjiang UniversityHarbin150080China
| | - Xiaoqin Xu
- Key Laboratory of Functional Inorganic Material ChemistryMinistry of Education of the People's Republic of ChinaSchool of Chemistry and Materials ScienceHeilongjiang UniversityHarbin150080China
| | - Yao Nie
- Key Laboratory of Functional Inorganic Material ChemistryMinistry of Education of the People's Republic of ChinaSchool of Chemistry and Materials ScienceHeilongjiang UniversityHarbin150080China
| | - Ruihong Wang
- Key Laboratory of Functional Inorganic Material ChemistryMinistry of Education of the People's Republic of ChinaSchool of Chemistry and Materials ScienceHeilongjiang UniversityHarbin150080China
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material ChemistryMinistry of Education of the People's Republic of ChinaSchool of Chemistry and Materials ScienceHeilongjiang UniversityHarbin150080China
| |
Collapse
|