1
|
Jiang Y, Li W, Li X, Liao Y, Liu X, Yu J, Xia S, Li W, Zhao B, Zhang J. Iodine-doped carbon nanotubes boosting the adsorption effect and conversion kinetics of lithium-sulfur batteries. J Colloid Interface Sci 2024; 672:287-298. [PMID: 38843681 DOI: 10.1016/j.jcis.2024.05.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 07/07/2024]
Abstract
Compared with lithium-ion batteries (LIBs), lithium-sulfur batteries (LSBs), based on electrochemical reactions involving multi-step 16-electron transformations provide higher specific capacity (1672 mAh g-1) and specific energy (2600 Wh kg-1), exhibiting great potential in the field of energy storage. However, the inherent insulation of sulfur, slow electrochemical reaction kinetics and detrimental shuttle-effect of lithium polysulfides (LiPSs) restrict the development of LSBs in practical applications. Herein, the iodine-doped carbon nanotubes (I-CNTs) is firstly reported as sulfur host material to the enhance the adsorption-conversion kinetics of LSBs. Iodine doping can significantly improve the polarity of I-CNTs. Iodine atoms with lone pair electrons (Lewis base) in iodine-doped CNTs can interact with lithium cations (Lewis acidic) in LiPSs, thereby anchoring polysulfides and suppressing subsequent shuttling behavior. Moreover, the charge transfer between iodine species (electron acceptor) and CNTs (electron donor) decreases the gap band and subsequently improves the conductivity of I-CNTs. The enhanced adsorption effect and conductivity are beneficial for accelerating reaction kinetics and enhancing electrocatalytic activity. The in-situ Raman spectroscopy, quasi in-situ electrochemical impedance spectroscopy (EIS) and Li2S potentiostatic deposition current-time (i-t) curves were conducted to verify mechanism of complex sulfur reduction reaction (SRR). Owing to above advantages, the I-CNTs@S composite cathode exhibits an ultrahigh initial capacity of 1326 mAh g-1 as well as outstanding cyclicability and rate performance. Our research results provide inspirations for the design of multifunctional host material for sulfur/carbon composite cathodes in LSBs.
Collapse
Affiliation(s)
- Yong Jiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wenzhuo Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xue Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yalan Liao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoyu Liu
- College of Sciences/Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China.
| | - Jiaqi Yu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shuixin Xia
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Wenrong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; College of Sciences/Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| | - Bing Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Jiujun Zhang
- College of Sciences/Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| |
Collapse
|
2
|
Li Y, Sun K, Fu Y, Wang S, Zhuge C, Yin X, Yang Z, Li Z, Liu D, Wang X, He D. "Bowling Collision Effect" of CoMo 6 Polyoxometalate Units Enables Wide Temperature Range from -20 to 60 °C and Dendrite Mitigation Li-S Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406343. [PMID: 39096067 DOI: 10.1002/adma.202406343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Indexed: 08/04/2024]
Abstract
To improve the performance of Lithium-Sulfur (Li-S) batteries, the reaction catalysts of lithium polysulfides (LiPSs) reactions should have the characteristics of large surface area, efficient atomic utilization, high conductivity, small size, good stability, and strong adjustability. Herein, Anderson-type polyoxometalate ([TMMo6O24]n-, TM = Co, Ni, Fe, represented by TMMo6 POMs) are used as the modified materials for Li-S battery separator. By customizing the central metal atoms, this work gains insights into the layer-by-layer electron transfer mechanism between TMMo6 units and LiPSs, similar to the collision effect of a bowling ball. Theoretical analysis and in situ experimental characterization show that the changes of CoMo6 units with moderate binding energy and lowest Gibbs free energy result in the formation of robust polar bonds and prolonged S─S bonds after adsorption. Hence, the representative Li-S battery with CoMo6 and graphene composite modified separator has a high initial capacity of 1588.6 mA h g-1 at 0.2 C, excellent cycle performance of more than 3000 cycles at 5 C, and uniform Li+ transport over 1900 h. More importantly, this work has revealed the inherent contradiction between the kinetics and thermodynamics, achieving a stable cycle in the temperature range of -20 to 60 °C.
Collapse
Affiliation(s)
- Yiding Li
- School of Materials and Energy, and LONGi Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| | - Kai Sun
- School of Materials and Energy, and LONGi Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yujun Fu
- School of Materials and Energy, and LONGi Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| | - Siqi Wang
- School of Materials and Energy, and LONGi Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| | - Chenyu Zhuge
- School of Materials and Energy, and LONGi Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoqiang Yin
- Shenzhen BYD Lithium Battery Company Limited, Shenzhen, 518000, China
| | - Zhibo Yang
- Shenzhen BYD Lithium Battery Company Limited, Shenzhen, 518000, China
| | - Zhenhua Li
- School of Materials and Energy, and LONGi Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| | - Dequan Liu
- School of Materials and Energy, and LONGi Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| | - Xi Wang
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Deyan He
- School of Materials and Energy, and LONGi Institute of Future Technology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
3
|
Liang F, Deng Q, Ning S, He H, Wang N, Zhu Y, Zhu J. Mastering Surface Sulfidation of MnP-MnO 2 Heterostructure to Facilitate Efficient Polysulfide Conversion in Li─S Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403391. [PMID: 38925593 PMCID: PMC11348264 DOI: 10.1002/advs.202403391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/12/2024] [Indexed: 06/28/2024]
Abstract
The development of lithium-sulfur (Li─S) batteries has been hampered by the shuttling effect of lithium polysulfides (LiPSs). An effective method to address this issue is to use an electrocatalyst to accelerate the catalytic conversion of LiPSs. In this study, heterogeneous MnP-MnO2 nanoparticles are uniformly synthesized and embedded in porous carbon (MnP-MnO2/C) as core catalysts to improve the reaction kinetics of LiPSs. In situ characterization and density functional theory (DFT) calculations confirm that the MnP-MnO2 heterostructure undergo surface sulfidation during the charge/discharge process, forming the MnS2 phase. Surface sulfidation of the MnP-MnO2 heterostructure catalyst significantly accelerated the SRR and Li2S activation, effectively inhibiting the LiPSs shuttling effect. Consequently, the MnP-MnO2/C@S cathode achieves outstanding rate performance (10 C, 500 mAh g-1) and ultrahigh cycling stability (0.017% decay rate per cycle for 2000 cycles at 5 C). A pouch cell with MnP-MnO2/C@S cathode delivers a high energy density of 429 Wh kg-1. This study may provide a new approach to investigating the surface sulfidation of electrocatalysts, which is valuable for advancing high-energy-density Li-S batteries.
Collapse
Affiliation(s)
- Fengxing Liang
- School of ResourcesEnvironment and MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi UniversityNanning530004P. R. China
| | - Qiao Deng
- School of ResourcesEnvironment and MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi UniversityNanning530004P. R. China
| | - Shunyan Ning
- School of ResourcesEnvironment and MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi UniversityNanning530004P. R. China
- School of Nuclear Science and TechnologyUniversity of South China28 Changsheng West RoadHengyang421001P. R. China
| | - Huibing He
- School of ResourcesEnvironment and MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi UniversityNanning530004P. R. China
| | - Nannan Wang
- School of ResourcesEnvironment and MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi UniversityNanning530004P. R. China
| | - Yanqiu Zhu
- School of ResourcesEnvironment and MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi UniversityNanning530004P. R. China
- Faculty of Environment, Science and EconomyUniversity of ExeterExeterEX44QFUnited Kingdom
| | - Jinliang Zhu
- School of ResourcesEnvironment and MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi UniversityNanning530004P. R. China
| |
Collapse
|
4
|
Gao Y, Deng Y, Xia S, Xi X, Zhang Z, Wang Y, Yang D, Li T, Dong A. Encasing Few-Layer MoS 2 within 2D Ordered Cubic Graphitic Cages to Smooth Trapping-Conversion of Lithium Polysulfides for Dendrite-Free Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402412. [PMID: 38647117 DOI: 10.1002/smll.202402412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/09/2024] [Indexed: 04/25/2024]
Abstract
The industrialization of lithium-sulfur (Li-S) batteries faces challenges due to the shuttling effect of lithium polysulfides (LiPSs) and the growth of lithium dendrites. To address these issues, a simple and scalable method is proposed to synthesize 2D membranes comprising a single layer of cubic graphitic cages encased with few-layer, curved MoS2. The distinctive 2D architecture is achieved by confining the epitaxial growth of MoS2 within the open cages of a 2D-ordered mesoporous graphitic framework (MGF), resulting in MoS2@MGF heterostructures with abundant sulfur vacancies. The experimental and theoretical studies establish that these MoS2@MGF membranes can act as a multifunctional interlayer in Li-S batteries to boost their comprehensive performance. The inclusion of the MoS2@MGF interlayer facilitates the trapping and conversion kinetics of LiPSs, preventing their shuttling effect, while simultaneously promoting uniform lithium deposition to inhibit dendrite growth. As a result, Li-S batteries with the MoS2@MGF interlayer exhibit high electrochemical performance even under high sulfur loading and lean electrolyte conditions. This work highlights the potential of designing advanced MoS2-encased heterostructures as interlayers, offering a viable solution to the current limitations plaguing Li-S batteries.
Collapse
Affiliation(s)
- Yifan Gao
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yuwei Deng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Shenxin Xia
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Xiangyun Xi
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Zhebin Zhang
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yajun Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325027, China
| | - Dong Yang
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Tongtao Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Angang Dong
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
5
|
Cheng Z, Lian J, Zhang J, Xiang S, Chen B, Zhang Z. Pristine MOF Materials for Separator Application in Lithium-Sulfur Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404834. [PMID: 38894547 PMCID: PMC11336918 DOI: 10.1002/advs.202404834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Indexed: 06/21/2024]
Abstract
Lithium-sulfur (Li-S) batteries have attracted significant attention in the realm of electronic energy storage and conversion owing to their remarkable theoretical energy density and cost-effectiveness. However, Li-S batteries continue to face significant challenges, primarily the severe polysulfides shuttle effect and sluggish sulfur redox kinetics, which are inherent obstacles to their practical application. Metal-organic frameworks (MOFs), known for their porous structure, high adsorption capacity, structural flexibility, and easy synthesis, have emerged as ideal materials for separator modification. Efficient polysulfides interception/conversion ability and rapid lithium-ion conduction enabled by MOFs modified layers are demonstrated in Li-S batteries. In this perspective, the objective is to present an overview of recent advancements in utilizing pristine MOF materials as modification layers for separators in Li-S batteries. The mechanisms behind the enhanced electrochemical performance resulting from each design strategy are explained. The viewpoints and crucial challenges requiring resolution are also concluded for pristine MOFs separator in Li-S batteries. Moreover, some promising materials and concepts based on MOFs are proposed to enhance electrochemical performance and investigate polysulfides adsorption/conversion mechanisms. These efforts are expected to contribute to the future advancement of MOFs in advanced Li-S batteries.
Collapse
Affiliation(s)
- Zhibin Cheng
- Fujian Key Laboratory of Polymer MaterialsCollege of Materials Science and EngineeringFujian Normal UniversityFuzhou350007China
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
| | - Jie Lian
- Fujian Key Laboratory of Polymer MaterialsCollege of Materials Science and EngineeringFujian Normal UniversityFuzhou350007China
| | - Jindan Zhang
- Fujian Key Laboratory of Polymer MaterialsCollege of Materials Science and EngineeringFujian Normal UniversityFuzhou350007China
| | - Shengchang Xiang
- Fujian Key Laboratory of Polymer MaterialsCollege of Materials Science and EngineeringFujian Normal UniversityFuzhou350007China
| | - Banglin Chen
- Fujian Key Laboratory of Polymer MaterialsCollege of Materials Science and EngineeringFujian Normal UniversityFuzhou350007China
| | - Zhangjing Zhang
- Fujian Key Laboratory of Polymer MaterialsCollege of Materials Science and EngineeringFujian Normal UniversityFuzhou350007China
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
| |
Collapse
|
6
|
Huang C, Yu J, Zhang CY, Cui Z, Chen J, Lai WH, Lei YJ, Nan B, Lu X, He R, Gong L, Li J, Li C, Qi X, Xue Q, Zhou JY, Qi X, Balcells L, Arbiol J, Cabot A. Electronic Spin Alignment within Homologous NiS 2/NiSe 2 Heterostructures to Promote Sulfur Redox Kinetics in Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400810. [PMID: 38569213 DOI: 10.1002/adma.202400810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/08/2024] [Indexed: 04/05/2024]
Abstract
The catalytic activation of the Li-S reaction is fundamental to maximize the capacity and stability of Li-S batteries (LSBs). Current research on Li-S catalysts mainly focuses on optimizing the energy levels to promote adsorption and catalytic conversion, while frequently overlooking the electronic spin state influence on charge transfer and orbital interactions. Here, hollow NiS2/NiSe2 heterostructures encapsulated in a nitrogen-doped carbon matrix (NiS2/NiSe2@NC) are synthesized and used as a catalytic additive in sulfur cathodes. The NiS2/NiSe2 heterostructure promotes the spin splitting of the 3d orbital, driving the Ni3+ transformation from low to high spin. This high spin configuration raises the electronic energy level and activates the electronic state. This accelerates the charge transfer and optimizes the adsorption energy, lowering the reaction energy barrier of the polysulfides conversion. Benefiting from these characteristics, LSBs based on NiS2/NiSe2@NC/S cathodes exhibit high initial capacity (1458 mAh·g⁻1 at 0.1C), excellent rate capability (572 mAh·g⁻1 at 5C), and stable cycling with an average capacity decay rate of only 0.025% per cycle at 1C during 500 cycles. Even at high sulfur loadings (6.2 mg·cm⁻2), high initial capacities of 1173 mAh·g⁻1 (7.27 mAh·cm⁻2) are measured at 0.1C, and 1058 mAh·g⁻1 is retained after 300 cycles.
Collapse
Affiliation(s)
- Chen Huang
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Department of Chemistry, University of Barcelona, Barcelona, 08028, Spain
| | - Jing Yu
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain
| | - Chao Yue Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education & School of Physical Science & Technology, Lanzhou University, Lanzhou, 730000, China
| | - Zhibiao Cui
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Jiakun Chen
- Analysis and Testing Center, South China Normal University, Guangzhou, 510006, China
| | - Wei-Hong Lai
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Yao-Jie Lei
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Bingfei Nan
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
| | - Xuan Lu
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
| | - Ren He
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
| | - Li Gong
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Department of Chemistry, University of Barcelona, Barcelona, 08028, Spain
| | - Junshan Li
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| | - Canhuang Li
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Department of Chemistry, University of Barcelona, Barcelona, 08028, Spain
| | - Xuede Qi
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Qian Xue
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jin Yuan Zhou
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education & School of Physical Science & Technology, Lanzhou University, Lanzhou, 730000, China
| | - Xueqiang Qi
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Lluís Balcells
- Institut de Ciència de Materials de Barcelona, Campus de la UAB, Bellaterra, Catalonia, 08193, Spain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia, 08193, Spain
- ICREA Pg. Lluis Companys, Barcelona, Catalonia, 08010, Spain
| | - Andreu Cabot
- Catalonia Institute for Energy Research-IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- ICREA Pg. Lluis Companys, Barcelona, Catalonia, 08010, Spain
| |
Collapse
|
7
|
Yang J, Yu H, Zhen F, Li H, Yang J, Zhang L, Qu B. An integrated electrode material based on corn straw cellulose biochar with three-dimensional network porous structure for boosting electrochemical performance of lithium batteries. Int J Biol Macromol 2024; 268:131569. [PMID: 38615854 DOI: 10.1016/j.ijbiomac.2024.131569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/17/2023] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
In this work an integrated electrode material based on the VS4 nanoparticles grow on three-dimensional network porous biochar is put forward, forming a heterostructure that significantly boost the rate and cycle performance in lithium batteries. Biochar derives from two-steps treatment removing partial cellulose and hemicellulose, possessing three-dimensional network porous structure and naturally nitrogenous. The integrated electrode material constructs the continuous electrons transfer network, accommodates the volume expansion and traps the polar polysulfides efficiently. After 100 cycles at 1C, the integrated electrode with biochar shows the highest specific discharge capacity. Even at 2C, the three-dimensional electrode can display a high specific discharge capacity of 798.6 mAh·g-1. Thus, our study has pointed the innovations approach of constructing integrated electrode materials with porous structure biochar to enhance the electrochemical performance of lithium batteries.
Collapse
Affiliation(s)
- Jiaxun Yang
- College of Art and Science, Northeast Agr Univ, Harbin 150030, China; Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, China
| | - Hailong Yu
- Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Hongru Li
- College of Art and Science, Northeast Agr Univ, Harbin 150030, China
| | - Jiancheng Yang
- College of Art and Science, Northeast Agr Univ, Harbin 150030, China
| | - Lingling Zhang
- College of Art and Science, Northeast Agr Univ, Harbin 150030, China
| | - Bin Qu
- College of Art and Science, Northeast Agr Univ, Harbin 150030, China.
| |
Collapse
|
8
|
Yang Q, Cai J, Li G, Gao R, Han Z, Han J, Liu D, Song L, Shi Z, Wang D, Wang G, Zheng W, Zhou G, Song Y. Chlorine bridge bond-enabled binuclear copper complex for electrocatalyzing lithium-sulfur reactions. Nat Commun 2024; 15:3231. [PMID: 38622167 PMCID: PMC11018799 DOI: 10.1038/s41467-024-47565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Engineering atom-scale sites are crucial to the mitigation of polysulfide shuttle, promotion of sulfur redox, and regulation of lithium deposition in lithium-sulfur batteries. Herein, a homonuclear copper dual-atom catalyst with a proximal distance of 3.5 Å is developed for lithium-sulfur batteries, wherein two adjacent copper atoms are linked by a pair of symmetrical chlorine bridge bonds. Benefiting from the proximal copper atoms and their unique coordination, the copper dual-atom catalyst with the increased active interface concentration synchronously guide the evolutions of sulfur and lithium species. Such a delicate design breaks through the activity limitation of mononuclear metal center and represents a catalyst concept for lithium-sulfur battery realm. Therefore, a remarkable areal capacity of 7.8 mA h cm-2 is achieved under the scenario of sulfur content of 60 wt.%, mass loading of 7.7 mg cm-2 and electrolyte dosage of 4.8 μL mg-1.
Collapse
Affiliation(s)
- Qin Yang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jinyan Cai
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Guanwu Li
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Runhua Gao
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University Shenzhen, Shenzhen, 518055, China
| | - Zhiyuan Han
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University Shenzhen, Shenzhen, 518055, China
| | - Jingjing Han
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, China
| | - Dong Liu
- Key Laboratory of Neutron Physics and Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621999, China
| | - Lixian Song
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zixiong Shi
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dong Wang
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Gongming Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| | - Weitao Zheng
- Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University Shenzhen, Shenzhen, 518055, China.
| | - Yingze Song
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
9
|
Wu X, Zhao Y, Li H, Zhou C, Wang X, Du L. Sulfurized polyacrylonitrile as cathodes for advanced lithium-sulfur batteries: advances in modification strategies. NANOSCALE 2024; 16:5060-5078. [PMID: 38372701 DOI: 10.1039/d3nr06247c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Sulfurized polyacrylonitrile (S@PAN) composites have gathered a lot of interest because of their advantages of high theoretical energy density, excellent cycling stability, and environmental friendliness. Meanwhile, their unique "covalent bonding" mechanism effectively avoids the dissolution and shuttling of polysulfides, and thus they are expected to be the most promising candidate for the cathode material in lithium-sulfur (Li-S) batteries. Over the past five years, S@PAN cathode materials have been widely studied in Li-S batteries, and it is very important to summarize the advances over time for their practical applications. This article reviews the latest progress concerning the modification of S@PAN cathode materials for improving poor electrical conductivity, low sulfur content, and sluggish reaction kinetics, and proposes possible research directions. We hope this review provides valuable insights and references for future research on Li-S batteries.
Collapse
Affiliation(s)
- Xiaolin Wu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yaqi Zhao
- School of Materials and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, China.
| | - Hang Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Cheng Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Xuanpeng Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China.
- Department of Physical Science & Technology, School of Science, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Lingzhi Du
- School of Materials and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, China.
| |
Collapse
|
10
|
Qi B, Hong X, Jiang Y, Shi J, Zhang M, Yan W, Lai C. A Review on Engineering Design for Enhancing Interfacial Contact in Solid-State Lithium-Sulfur Batteries. NANO-MICRO LETTERS 2024; 16:71. [PMID: 38175423 PMCID: PMC10767021 DOI: 10.1007/s40820-023-01306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024]
Abstract
The utilization of solid-state electrolytes (SSEs) presents a promising solution to the issues of safety concern and shuttle effect in Li-S batteries, which has garnered significant interest recently. However, the high interfacial impedances existing between the SSEs and the electrodes (both lithium anodes and sulfur cathodes) hinder the charge transfer and intensify the uneven deposition of lithium, which ultimately result in insufficient capacity utilization and poor cycling stability. Hence, the reduction of interfacial resistance between SSEs and electrodes is of paramount importance in the pursuit of efficacious solid-state batteries. In this review, we focus on the experimental strategies employed to enhance the interfacial contact between SSEs and electrodes, and summarize recent progresses of their applications in solid-state Li-S batteries. Moreover, the challenges and perspectives of rational interfacial design in practical solid-state Li-S batteries are outlined as well. We expect that this review will provide new insights into the further technique development and practical applications of solid-state lithium batteries.
Collapse
Affiliation(s)
- Bingxin Qi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, People's Republic of China
| | - Xinyue Hong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, People's Republic of China
| | - Ying Jiang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, People's Republic of China
| | - Jing Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, People's Republic of China
| | - Mingrui Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, People's Republic of China
| | - Wen Yan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, People's Republic of China.
| | - Chao Lai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, People's Republic of China.
| |
Collapse
|
11
|
Zhang Z, Han WQ. From Liquid to Solid-State Lithium Metal Batteries: Fundamental Issues and Recent Developments. NANO-MICRO LETTERS 2023; 16:24. [PMID: 37985522 PMCID: PMC10661211 DOI: 10.1007/s40820-023-01234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/30/2023] [Indexed: 11/22/2023]
Abstract
The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles, which have increasingly stringent energy density requirements. Lithium metal batteries (LMBs), with their ultralow reduction potential and high theoretical capacity, are widely regarded as the most promising technical pathway for achieving high energy density batteries. In this review, we provide a comprehensive overview of fundamental issues related to high reactivity and migrated interfaces in LMBs. Furthermore, we propose improved strategies involving interface engineering, 3D current collector design, electrolyte optimization, separator modification, application of alloyed anodes, and external field regulation to address these challenges. The utilization of solid-state electrolytes can significantly enhance the safety of LMBs and represents the only viable approach for advancing them. This review also encompasses the variation in fundamental issues and design strategies for the transition from liquid to solid electrolytes. Particularly noteworthy is that the introduction of SSEs will exacerbate differences in electrochemical and mechanical properties at the interface, leading to increased interface inhomogeneity-a critical factor contributing to failure in all-solid-state lithium metal batteries. Based on recent research works, this perspective highlights the current status of research on developing high-performance LMBs.
Collapse
Affiliation(s)
- Zhao Zhang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Wei-Qiang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
12
|
Li J, Gao L, Pan F, Gong C, Sun L, Gao H, Zhang J, Zhao Y, Wang G, Liu H. Engineering Strategies for Suppressing the Shuttle Effect in Lithium-Sulfur Batteries. NANO-MICRO LETTERS 2023; 16:12. [PMID: 37947874 PMCID: PMC10638349 DOI: 10.1007/s40820-023-01223-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/20/2023] [Indexed: 11/12/2023]
Abstract
Lithium-sulfur (Li-S) batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost. Nevertheless, the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value. Many methods were proposed for inhibiting the shuttle effect of polysulfide, improving corresponding redox kinetics and enhancing the integral performance of Li-S batteries. Here, we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li-S batteries. First, the electrochemical principles/mechanism and origin of the shuttle effect are described in detail. Moreover, the efficient strategies, including boosting the sulfur conversion rate of sulfur, confining sulfur or lithium polysulfides (LPS) within cathode host, confining LPS in the shield layer, and preventing LPS from contacting the anode, will be discussed to suppress the shuttle effect. Then, recent advances in inhibition of shuttle effect in cathode, electrolyte, separator, and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li-S batteries. Finally, we present prospects for inhibition of the LPS shuttle and potential development directions in Li-S batteries.
Collapse
Affiliation(s)
- Jiayi Li
- Joint International Laboratory On Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Li Gao
- Joint International Laboratory On Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Fengying Pan
- Joint International Laboratory On Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Cheng Gong
- Joint International Laboratory On Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Limeng Sun
- Joint International Laboratory On Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China
| | - Hong Gao
- Joint International Laboratory On Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China.
| | - Jinqiang Zhang
- Centre for Clean Energy Technology, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| | - Yufei Zhao
- Joint International Laboratory On Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, People's Republic of China.
| | - Guoxiu Wang
- Centre for Clean Energy Technology, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia.
| | - Hao Liu
- Centre for Clean Energy Technology, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia.
| |
Collapse
|
13
|
Chen H, Xie YX, Liu SS, Peng H, Zheng WC, Dai P, Huang YX, Sun M, Lin M, Huang L, Sun SG. Solid Electrolyte Interphase Structure Regulated by Functional Electrolyte Additive for Enhancing Li Metal Anode Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45834-45843. [PMID: 37733956 DOI: 10.1021/acsami.3c08332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Lithium (Li) metal anodes have become an important component of the next generation of high energy density batteries. However, the Li metal anode still has problems such as Li dendrite growth and unstable solid electrolyte interface layer. Herein, we present a functional electrolyte additive (PANHF) successfully synthesized from acrylonitrile and hexafluorobutyl methacrylate via a polymerization reaction. With extensive analytical characterization, it is found that the PANHF can improve the reversibility and Coulombic efficiency of the Li deposition/dissolution reaction and prevent the growth of Li dendrites by forming a solid electrolyte interphase rich in organic matter on the outer layer and LiF on the inner layer. The results show that the cycling performance of the Li/Li cell was greatly improved in the electrolyte containing 0.5 wt % PANHF. Specifically, the cycling stability of more than 700 cycles was achieved at a current density of 1.0 mA cm-2. Moreover, the Li/NCM811 cell with 0.5 wt % PANHF has a higher capacity of 137.7 mA h g-1 at 1.0 C and a capacity retention of 83.41% after 200 cycles. This work highlights the importance of protecting the Li metal anode with functional bipolymer additives for next-generation Li metal batteries.
Collapse
Affiliation(s)
- Hui Chen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu-Xiang Xie
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shi-Shi Liu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hao Peng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei-Chen Zheng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Peng Dai
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yi-Xin Huang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - MiaoLan Sun
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - MengWei Lin
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ling Huang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shi-Gang Sun
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|