1
|
Lin J, Kilani M, Baharfar M, Wang R, Mao G. Understanding the nanoscale phenomena of nucleation and crystal growth in electrodeposition. NANOSCALE 2024; 16:19564-19588. [PMID: 39380552 DOI: 10.1039/d4nr02389g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Electrodeposition is used at the industrial scale to make coatings, membranes, and composites. With better understanding of the nanoscale phenomena associated with the early stage of the process, electrodeposition has potential to be adopted by manufacturers of energy storage devices, advanced electrode materials, fuel cells, carbon dioxide capturing technologies, and advanced sensing electronics. The ability to conduct precise electrochemical measurements using cyclic voltammetry, chronoamperometry, and chronopotentiometry in addition to control of precursor composition and concentration makes electrocrystallization an attractive method to investigate nucleation and early-stage crystal growth. In this article, we review recent findings of nucleation and crystal growth behaviors at the nanoscale, paying close attention to those that deviate from the classical theories in various electrodeposition systems. The review affirms electrodeposition as a valuable method both for gaining new insights into nucleation and crystallization on surfaces and as a low-cost scalable technology for the manufacturing of advanced materials and devices.
Collapse
Affiliation(s)
- Jiancheng Lin
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Mohamed Kilani
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Ren Wang
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, 2052, Australia.
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3FB, UK
| |
Collapse
|
2
|
Lee M, Choi I, Kim A, Paik S, Kim D, Kim H, Nam KW. Supramolecular Metal-Organic Framework for the High Stability of Aqueous Rechargeable Zinc Batteries. ACS NANO 2024; 18:22586-22595. [PMID: 39105721 DOI: 10.1021/acsnano.4c08550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Aqueous rechargeable Zn batteries (AZBs) are considered to be promising next-generation battery systems. However, the growth of Zn dendrites and water-induced side reactions have hindered their practical application, especially with regard to long-term cyclability. To address these challenges, we introduce a supramolecular metal-organic framework (SMOF) coating layer using an α-cyclodextrin-based MOF (α-CD-MOF-K) and a polymeric binder. The plate-like α-CD-MOF-K particles, combined with the polymeric binder create dense and homogeneous Zn2+ ion conductive pore channels that can vertically transport Zn2+ ions through the cavity while restricting the contact of water molecules. Molecular dynamics (MD) simulation verifies that Zn2+ ions can reversibly migrate through the pores of α-CD-MOF-K by partial dehydration. The uniform Zn deposition/dissolution promotes a smooth solid-electrolyte interface layer on the Zn metal anode and effectively suppresses side reactions with free water molecules. The α-CD-MOF-K@Zn symmetric cell exhibits stable cycling and a small polarization voltage of 70 mV for 800 h at 5 mA cm-2, and the α-CD-MOF-K@Zn|α-MnO2 full cell shows only 0.12% capacity decay per cycle at a rate of 1 A g-1.
Collapse
Affiliation(s)
- Minji Lee
- Department of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Inyoung Choi
- Department of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ayoung Kim
- Department of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sanga Paik
- Department of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Daye Kim
- Department of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Heejin Kim
- Division of Analytical Science, Korea Basic Science Institute, 169-148 Gwahak-ro, Daejeon 34133, Republic of Korea
| | - Kwan Woo Nam
- Department of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
3
|
Doménech-Carbó A, Martini M, Di Turo F, de Silveira GD, Montoya N. Electrochemistry for non-electrochemists: a postgraduate formative project. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
AbstractThe essential guidelines are presented of a postgraduate course on electrochemistry for master studies at the University of Valencia (Spain). This course has been designed for students with a minimal knowledge of electrochemistry. It is based on laboratory experiments that, starting from an initial theoretical core, promotes the in-laboratory discussion of concepts, operations, functional relations, etc. The course, although focused on voltammetric techniques, covers the main concepts and experimental aspects of electrochemistry and particular attention is put to erroneous conceptions regarding fundamental physicochemical concepts and operations (misconceptions) as well as on general aspects of the scientific methodology (meta-conceptions) around this discipline.
Collapse
|
4
|
Scholz F. Benefits of electrochemistry studies for the majority of students who will not become electrochemists. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractIn teaching electrochemistry, it is of primary importance to make students always aware of the relations between electrochemistry and all the non-electrochemical topics, which are taught. The vast majority of students will not specialise in electrochemistry, but they all can very much benefit from the basics and concepts of electrochemistry. This paper is aimed to give suggestions how the teaching of electrochemistry can easily be interrelated to topics of inorganic, organic, analytical, environmental chemistry, biochemistry and biotechnology.
Collapse
|
5
|
Vitti NJ, Majumdar P, White HS. Critical Nucleus Size and Activation Energy of Ag Nucleation by Electrochemical Observation of Isolated Nucleation Events. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1173-1180. [PMID: 36623256 DOI: 10.1021/acs.langmuir.2c02946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The induction times for electrodeposition of individual Ag nanoparticles on Pt nanodisk electrodes in acetonitrile were used to determine the critical nucleus size and activation energy barrier associated with the formation of Ag nuclei. Induction times for the nucleation and growth of a single Ag nanoparticle were determined following the application of a potential step to reduce Ag+ at overpotentials, η, ranging from -130 to -70 mV. Sufficiently small Pt electrodes (5.1 × 10-10-2.6 × 10-11 cm2) were used to ensure that the detection of a single Ag nucleation event occurred during the experimental observation time (150 ms-1000 s). Multiple measurements of Ag nucleation induction times were recorded to determine nucleation rates as a function of η using cumulative probability theory. Both classical nucleation theory (CNT) and the atomistic theory of electrochemical nucleation were employed to analyze experimental nucleation rates, without a requisite knowledge of the nucleus geometry or surface free energy. Using the CNT, the number of atoms comprising the critical size nucleus, Nc, was estimated to be 1-9 atoms for η ranging from -130 to -70 mV, in good agreement with 1-5 atoms obtained using atomistic theory. The experimental nucleation rates were also used to determine the activation energy barriers for nucleation from the CNT, which varied from 3.31 ± 0.05 to 13 ± 1 kT over the same range of η.
Collapse
Affiliation(s)
- Nicholas J Vitti
- Department of Chemistry, University of Utah, Salt Lake City, Utah84112, United States
| | - Pavel Majumdar
- Department of Chemistry, University of Utah, Salt Lake City, Utah84112, United States
| | - Henry S White
- Department of Chemistry, University of Utah, Salt Lake City, Utah84112, United States
| |
Collapse
|
6
|
Influence of the electrolyte conductivity on the critical current density and the breakdown voltage. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
In memoriam of Alexander Milchev. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Mol A, Meuwissen DJM, Pruim SD, Zhou C, van Vught V, Klok JBM, Buisman CJN, van der Weijden RD. Novel Agglomeration Strategy for Elemental Sulfur Produced during Biological Gas Desulfurization. ACS OMEGA 2021; 6:27913-27923. [PMID: 34722991 PMCID: PMC8554788 DOI: 10.1021/acsomega.1c03701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
This article presents a novel crystal agglomeration strategy for elemental sulfur (S) produced during biological desulfurization (BD). A key element is the nucleophilic dissolution of S by sulfide (HS-) to polysulfides (S x 2-), which was enhanced by a sulfide-rich, anoxic reactor. This study demonstrates that with enhanced S x 2- formation, crystal agglomerates are formed with a uniform size (14.7 ± 3.1 μm). In contrast, with minimal S x 2- formation, particle size fluctuates markedly (5.6 ± 5.9 μm) due to the presence of agglomerates and single crystals. Microscopic analysis showed that the uniformly sized agglomerates had an irregular structure, whereas the loose particles and agglomerates were more defined and bipyramidal. The irregular agglomerates are explained by dissolution of S by (poly)sulfides, which likely changed the crystal surface structure and disrupted crystal growth. Furthermore, S from S x 2- appeared to form at least 5× faster than from HS- based on the average S x 2- chain length of x ≈ 5, thereby stimulating particle agglomeration. In addition, microscopy suggested that S crystal growth proceeded via amorphous S globules. Our findings imply that the crystallization product is controlled by the balance between dissolution and formation of S. This new insight has a strong potential to prevent poor S settleability in BD.
Collapse
Affiliation(s)
- Annemerel
R. Mol
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Paqell
B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands
| | - Derek J. M. Meuwissen
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Sebastian D. Pruim
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Chenyu Zhou
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Vincent van Vught
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Johannes B. M. Klok
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Paqell
B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands
| | - Cees J. N. Buisman
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands
| | - Renata D. van der Weijden
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900 CC Leeuwarden, The Netherlands
| |
Collapse
|
9
|
Sarfo P, Das A, Young C. Extraction and optimization of neodymium from molten fluoride electrolysis. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117770] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Jovanovski G, Makreski P. Intriguing minerals: photoinduced solid-state transition of realgar to pararealgar—direct atomic scale observation and visualization. CHEMTEXTS 2020. [DOI: 10.1007/s40828-019-0100-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Taqieddin A, Allshouse MR, Alshawabkeh AN. Review-Mathematical Formulations of Electrochemically Gas-Evolving Systems. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2018; 165:E694-E711. [PMID: 30542215 PMCID: PMC6287757 DOI: 10.1149/2.0791813jes] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrochemically gas-evolving systems are utilized in alkaline water electrolysis, hydrogen production, and many other applications. To design and optimize these systems, high-fidelity models must account for electron-transfer, chemical reactions, thermodynamics, electrode porosity, and hydrodynamics as well as the interconnectedness of these phenomena. Further complicating these models is the production and presence of bubbles. Bubble nucleation naturally occurs due to the chemical reactions and impacts the reaction rate. Modeling bubble growth requires an accurate accounting of interfacial mass transfer. When the bubble becomes large, detachment occurs and the system is modeled as a two-phase flow where the bubbles can then impact material transport in the bulk. In this paper, we review the governing mathematical models of the physicochemical life cycle of a bubble in an electrolytic medium from a multiscale, multiphysics viewpoint. For each phase of the bubble life cycle, the prevailing mathematical formulations are reviewed and compared with particular attention paid to physicochemical processes and the impact the bubble. Through the review of a broad range of models, we provide a compilation of the current state of bubble modeling in electrochemically gas-evolving systems.
Collapse
Affiliation(s)
- Amir Taqieddin
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Michael R. Allshouse
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - Akram N. Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
12
|
Electrochemical nucleation and growth of three-dimensional clusters: the case of multi-step ions discharge–I. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3511-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Another beauty of analytical chemistry: chemical analysis of inorganic pigments of art and archaeological objects. CHEMTEXTS 2016. [DOI: 10.1007/s40828-016-0033-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Milchev A. Electrochemical phase formation: classical and atomistic theoretical models. NANOSCALE 2016; 8:13867-13872. [PMID: 27108683 DOI: 10.1039/c6nr02354a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The process of electrochemical phase formation at constant thermodynamic supersaturation is considered in terms of classical and atomistic nucleation theories. General theoretical expressions are derived for important thermodynamic and kinetic quantities commenting also upon the correlation between the existing theoretical models and experimental results. Progressive and instantaneous nucleation and growth of multiple clusters of the new phase are briefly considered, too.
Collapse
Affiliation(s)
- Alexander Milchev
- Evgeni Budevski Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 10, 1113 Sofia, Bulgaria.
| |
Collapse
|
15
|
|