1
|
Golding PH. Dual-energy X-ray absorptiometry (DXA) to measure bone mineral density (BMD) for diagnosis of osteoporosis - experimental data from artificial vertebrae confirms significant dependence on bone size. Bone Rep 2022; 17:101607. [PMID: 35937936 PMCID: PMC9352459 DOI: 10.1016/j.bonr.2022.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/13/2022] [Accepted: 07/21/2022] [Indexed: 10/24/2022] Open
|
2
|
Fleps I, Pálsson H, Baker A, Enns-Bray W, Bahaloo H, Danner M, Singh NB, Taylor WR, Sigurdsson S, Gudnason V, Ferguson SJ, Helgason B. Finite element derived femoral strength is a better predictor of hip fracture risk than aBMD in the AGES Reykjavik study cohort. Bone 2022; 154:116219. [PMID: 34571206 DOI: 10.1016/j.bone.2021.116219] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/16/2021] [Accepted: 09/22/2021] [Indexed: 02/02/2023]
Abstract
Hip fractures associated with a high economic burden, loss of independence, and a high rate of post-fracture mortality, are a major health concern for modern societies. Areal bone mineral density is the current clinical metric of choice when assessing an individual's future risk of fracture. However, this metric has been shown to lack sensitivity and specificity in the targeted selection of individuals for preventive interventions. Although femoral strength derived from computed tomography based finite element models has been proposed as an alternative based on its superior femoral strength prediction ex vivo, such predictions have only shown marginal or no improvement for assessing hip fracture risk. This study compares finite element derived femoral strength to aBMD as a metric for hip fracture risk assessment in subjects (N = 601) from the AGES Reykjavik Study cohort and analyses the dependence of femoral strength predictions and classification accuracy on the material model and femoral loading alignment. We found hip fracture classification based on finite element derived femoral strength to be significantly improved compared to aBMD. Finite element models with non-linear material models performed better at classifying hip fractures compared to finite element models with linear material models and loading alignments with low internal rotation and adduction, which do not correspond to weak femur alignments, were found to be most suitable for hip fracture classification.
Collapse
Affiliation(s)
- Ingmar Fleps
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland.
| | - Halldór Pálsson
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | - Hassan Bahaloo
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Michael Danner
- Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Navrag B Singh
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland; Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore
| | - William R Taylor
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland; Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore
| | | | | | - Stephen J Ferguson
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland; Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore
| | - Benedikt Helgason
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland; Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore
| |
Collapse
|
3
|
Grassi L, Fleps I, Sahlstedt H, Väänänen SP, Ferguson SJ, Isaksson H, Helgason B. Validation of 3D finite element models from simulated DXA images for biofidelic simulations of sideways fall impact to the hip. Bone 2021; 142:115678. [PMID: 33022451 DOI: 10.1016/j.bone.2020.115678] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
Computed tomography (CT)-derived finite element (FE) models have been proposed as a tool to improve the current clinical assessment of osteoporosis and personalized hip fracture risk by providing an accurate estimate of femoral strength. However, this solution has two main drawbacks, namely: (i) 3D CT images are needed, whereas 2D dual-energy x-ray absorptiometry (DXA) images are more generally available, and (ii) quasi-static femoral strength is predicted as a surrogate for fracture risk, instead of predicting whether a fall would result in a fracture or not. The aim of this study was to combine a biofidelic fall simulation technique, based on 3D computed tomography (CT) data with an algorithm that reconstructs 3D femoral shape and BMD distribution from a 2D DXA image. This approach was evaluated on 11 pelvis-femur constructs for which CT scans, ex vivo sideways fall impact experiments and CT-derived biofidelic FE models were available. Simulated DXA images were used to reconstruct the 3D shape and bone mineral density (BMD) distribution of the left femurs by registering a projection of a statistical shape and appearance model with a genetic optimization algorithm. The 2D-to-3D reconstructed femurs were meshed, and the resulting FE models inserted into a biofidelic FE modeling pipeline for simulating a sideways fall. The median 2D-to-3D reconstruction error was 1.02 mm for the shape and 0.06 g/cm3 for BMD for the 11 specimens. FE models derived from simulated DXAs predicted the outcome of the falls in terms of fracture versus non-fracture with the same accuracy as the CT-derived FE models. This study represents a milestone towards improved assessment of hip fracture risk based on widely available clinical DXA images.
Collapse
Affiliation(s)
- Lorenzo Grassi
- Department of Biomedical Engineering, Lund University, Lund, Sweden.
| | - Ingmar Fleps
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | - Sami P Väänänen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | | | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | | |
Collapse
|
4
|
Luo Y, Yang H. Comparison of femur stiffness measured from DXA and QCT for assessment of hip fracture risk. J Bone Miner Metab 2019; 37:342-350. [PMID: 29671044 DOI: 10.1007/s00774-018-0926-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/02/2018] [Indexed: 01/25/2023]
Abstract
Femur stiffness, for example axial and bending stiffness, integrates both geometric and material information of the bone, and thus can be an effective indicator of bone strength and hip fracture risk. Femur stiffness is ideally measured from quantitative computed tomography (QCT), but QCT is not recommended for routine clinical use due to the public concern about exposure to high-dosage radiation. Dual energy X-ray absorptiometry (DXA) is currently the primary imaging modality in clinic. However, DXA is two-dimensional and it is not clear whether DXA-estimated stiffness has adequate accuracy to replace its QCT counterpart for clinical application. This study investigated the accuracy of femur stiffness (axial and bending) estimated from CTXA (computed tomography X-ray absorptiometry) and DXA against those directly measured from QCT. Proximal-femur QCT and DXA from 67 subjects were acquired. For each femur, the QCT dataset was projected into CTXA using CTXA-Hip (Mindways Software, Inc., USA). Femur stiffness at the femoral neck and intertrochanter were then calculated from QCT, CTXA and DXA, respectively, and different elasticity-density relationships were considered in the calculation. Pearson correlations between QCT and CTXA/DXA measured stiffness were studied. The results showed that there were strong correlations between QCT and CTXA derived stiffness, although the correlations were affected by the adopted elasticity-density relationship. Correlations between QCT and DXA derived stiffness were much less strong, mainly caused by the inconsistence of femur orientation in QCT projection and in DXA positioning. Our preliminary clinical study showed that femur stiffness had slightly better performance than femur geometry in discrimination of hip fracture cases from controls.
Collapse
Affiliation(s)
- Yunhua Luo
- Department of Mechanical Engineering, University of Manitoba, 75A Chancellor's Circle, Winnipeg, MB, R3T 2N2, Canada.
- Department of Biomedical Engineering, University of Manitoba, 75A Chancellor's Circle, Winnipeg, MB, R3T 2N2, Canada.
| | - Huijuan Yang
- Department of Mechanical Engineering, University of Manitoba, 75A Chancellor's Circle, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|