1
|
Hamada T, Sutherland K, Ishikawa M, Saito J, Miyamoto N, Honma S, Shirato H, Honma KI. A novel method for measurements of sleep/wake states, feeding and drinking behaviors using the tracking technique of 3D positions in freely moving mice. Biochem Biophys Res Commun 2024; 732:150359. [PMID: 39032409 DOI: 10.1016/j.bbrc.2024.150359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
We have previously developed a 3D video tracking system which enables us to analyze long-term quantitative analysis of gene expression in freely moving mice. In the present study, we improved 3D video tracking and developed a system that analyzes more detailed behavioral data. We succeeded in simultaneously analyzing sleep-wake, feeding, and drinking behavior rhythms in the same individual using our tracking system. This system will make it possible to measure gene expression in each tissue in vivo in real time in relation to the various behavioral rhythms mentioned above.
Collapse
Affiliation(s)
- Toshiyuki Hamada
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara, Tochigi, 324-8501, Japan.
| | - Kenneth Sutherland
- Global Center for Biomedical Science and Engineering, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Masayori Ishikawa
- Department of Biomedical Science and Engineering, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan
| | - Jun Saito
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara, Tochigi, 324-8501, Japan
| | - Naoki Miyamoto
- Division of Applied Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, North15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Sato Honma
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8638, Japan
| | - Hiroki Shirato
- Global Center for Biomedical Science and Engineering, Hokkaido University, North 15 West 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Ken-Ichi Honma
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
2
|
Hamada K, Ishii Y, Yoshida Y, Nakaya M, Sato Y, Kanai M, Kikuchi Y, Yamaguchi T, Iijima N, Sutherland K, Hamada T. The analysis of Period1 gene expression in vivo and in vitro using a micro PMT system. Biochem Biophys Res Commun 2021; 577:64-70. [PMID: 34507067 DOI: 10.1016/j.bbrc.2021.08.084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022]
Abstract
To detect a small amount of Period1 (Per1) expression, we developed a micro-photomultiplier tube (μPMT) system which can be used both in vivo and in vitro. Using this system, we succeeded in detecting Per1 gene expression in the skin of freely moving mice over 240 times higher compared with that of the tissue contact optical sensor (TCS) as previously reported. For in vitro studies, we succeeded in detecting elevated Per1 expression by streptozotocin (STZ) treatment in the scalp hairs at an early stage of diabetes, when glucose content in the blood was still normal. In addition, we could detect elevated Per1 expression in a single whisker hair at the time of diabetes onset. These results show that our μPMT system responds to minute changes in gene expression in freely moving mice in vivo and in mice hair follicles in vitro. Furthermore, Per1 in the hair can be used for a marker of diabetic aggravation.
Collapse
Affiliation(s)
- Kazuko Hamada
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara, Tochigi, 324-8501, Japan
| | - Yuki Ishii
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara, Tochigi, 324-8501, Japan
| | - Yukina Yoshida
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara, Tochigi, 324-8501, Japan
| | - Mizuki Nakaya
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara, Tochigi, 324-8501, Japan
| | - Yusuke Sato
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara, Tochigi, 324-8501, Japan
| | - Megumi Kanai
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara, Tochigi, 324-8501, Japan
| | - Yoshihiro Kikuchi
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara, Tochigi, 324-8501, Japan
| | - Takeshi Yamaguchi
- Center for Basic Medical Research, International University of Health and Welfare, Ohtawara, Tochigi, Japan
| | - Norio Iijima
- Center for Basic Medical Research, International University of Health and Welfare, Ohtawara, Tochigi, Japan
| | - Kenneth Sutherland
- Global Center for Biomedical Science and Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8012, Japan
| | - Toshiyuki Hamada
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara, Tochigi, 324-8501, Japan; Department of Biological Response and Regulation, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan; Hakujikai Institute of Gerontology, 5-11-1, Shikahama, Adachi Ward, Tokyo, 123-0864, Japan.
| |
Collapse
|