1
|
Qiu C, Zhang Z, Xu Z, Qiao L, Ning L, Zhang S, Su M, Wu W, Song K, Xu Z, Chen LQ, Zheng H, Liu C, Qiu W, Li F. Transparent ultrasonic transducers based on relaxor ferroelectric crystals for advanced photoacoustic imaging. Nat Commun 2024; 15:10580. [PMID: 39632872 PMCID: PMC11618688 DOI: 10.1038/s41467-024-55032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Photoacoustic imaging is a promising non-invasive functional imaging modality for fundamental research and clinical diagnosis. However, achieving capillary-level resolution, wide field-of-view, and high frame rates remains challenging. To address this, we propose a transparent ultrasonic transducer design using our developed transparent Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals. Our fabrication technique incorporates quartz-glass-and-epoxy matching layers with low-resistance indium-tin-oxide electrodes through a brass-ring based structure, enabling a high frequency (28.5 MHz), wide bandwidth (78%), and enhanced pulse-echo sensitivity (2.5 V under 2-μJ pulse excitation). Our Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3-based transparent ultrasonic transducer demonstrates a four-fold enhancement in photoacoustic detection sensitivity when compared to the LiNbO3-based counterpart, leading to a 13 dB improvement of signal-to-noise ratio in microvascular photoacoustic imaging. This enables dynamic monitoring of mouse cerebral cortex microvasculature during seizures at 0.8 Hz frame rates over a 1.5 × 1.5 mm2 field-of-view. Our work paves the way for high-performance and compact photoacoustic imaging systems using advanced piezoelectric materials.
Collapse
Affiliation(s)
- Chaorui Qiu
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhiqiang Zhang
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhiqiang Xu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liao Qiao
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Li Ning
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shujun Zhang
- Institute of Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, Australia
| | - Min Su
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weichang Wu
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kexin Song
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhuo Xu
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Long-Qing Chen
- Materials Research Institute, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Hairong Zheng
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Weibao Qiu
- Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Fei Li
- Electronic Materials Research Laboratory, Key Lab of Education Ministry and State Key Laboratory for Mechanical Behavior of Materials, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China.
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Nyayapathi N, Zheng E, Zhou Q, Doyley M, Xia J. Dual-modal Photoacoustic and Ultrasound Imaging: from preclinical to clinical applications. FRONTIERS IN PHOTONICS 2024; 5:1359784. [PMID: 39185248 PMCID: PMC11343488 DOI: 10.3389/fphot.2024.1359784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Photoacoustic imaging is a novel biomedical imaging modality that has emerged over the recent decades. Due to the conversion of optical energy into the acoustic wave, photoacoustic imaging offers high-resolution imaging in depth beyond the optical diffusion limit. Photoacoustic imaging is frequently used in conjunction with ultrasound as a hybrid modality. The combination enables the acquisition of both optical and acoustic contrasts of tissue, providing functional, structural, molecular, and vascular information within the same field of view. In this review, we first described the principles of various photoacoustic and ultrasound imaging techniques and then classified the dual-modal imaging systems based on their preclinical and clinical imaging applications. The advantages of dual-modal imaging were thoroughly analyzed. Finally, the review ends with a critical discussion of existing developments and a look toward the future.
Collapse
Affiliation(s)
- Nikhila Nyayapathi
- Electrical and Computer Engineering, University of Rochester, Rochester, New York, 14627
| | - Emily Zheng
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, 14226
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90007
| | - Marvin Doyley
- Electrical and Computer Engineering, University of Rochester, Rochester, New York, 14627
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, 14226
| |
Collapse
|
3
|
Cho S, Kim M, Ahn J, Kim Y, Lim J, Park J, Kim HH, Kim WJ, Kim C. An ultrasensitive and broadband transparent ultrasound transducer for ultrasound and photoacoustic imaging in-vivo. Nat Commun 2024; 15:1444. [PMID: 38365897 PMCID: PMC10873420 DOI: 10.1038/s41467-024-45273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024] Open
Abstract
Transparent ultrasound transducers (TUTs) can seamlessly integrate optical and ultrasound components, but acoustic impedance mismatch prohibits existing TUTs from being practical substitutes for conventional opaque ultrasound transducers. Here, we propose a transparent adhesive based on a silicon dioxide-epoxy composite to fabricate matching and backing layers with acoustic impedances of 7.5 and 4-6 MRayl, respectively. By employing these layers, we develop an ultrasensitive, broadband TUT with 63% bandwidth at a single resonance frequency and high optical transparency ( > 80%), comparable to conventional opaque ultrasound transducers. Our TUT maximises both acoustic power and transfer efficiency with maximal spectrum flatness while minimising ringdowns. This enables high contrast and high-definition dual-modal ultrasound and photoacoustic imaging in live animals and humans. Both modalities reach an imaging depth of > 15 mm, with depth-to-resolution ratios exceeding 500 and 370, respectively. This development sets a new standard for TUTs, advancing the possibilities of sensor fusion.
Collapse
Affiliation(s)
- Seonghee Cho
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Minsu Kim
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Joongho Ahn
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yeonggeun Kim
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Junha Lim
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jeongwoo Park
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyung Ham Kim
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Medical Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Department of Medical Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
4
|
Ghavami M, Sobhani MR, Zemp R. Transparent Dual-Frequency CMUT Arrays for Photoacoustic Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1621-1630. [PMID: 37938953 DOI: 10.1109/tuffc.2023.3331356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The opaque ultrasound transducers used in conventional photoacoustic imaging systems necessitate oblique light delivery, which gives rise to some disadvantages such as inefficient target illumination and bulky system size. This work proposes a transparent capacitive micromachined ultrasound transducer (CMUT) linear array with dual-band operation for through-illumination photoacoustic imaging. Fabricated using an adhesive wafer bonding method, the array consists of optically transparent conductors [indium tin oxide (ITO)] as both top and bottom electrodes, a transparent polymer [bisbenzocyclobutene (BCB)] as the sidewall and adhesive material, and largely transparent silicon nitride as the membrane. The fabricated device had a maximum optical transparency of 76.8% in the visible range. Furthermore, to simultaneously maintain higher spatial resolution and deeper imaging depth, this dual-frequency array consists of low- and high-frequency channels with 4.2- and 9.3-MHz center frequencies, respectively, which are configured in an interlaced architecture to minimize the grating lobes in the receive point spread function (PSF). With a wider bandwidth compared to the single-frequency case, the fabricated transparent dual-frequency CMUT array was used in through-illumination photoacoustic imaging of wire targets demonstrating an improved spatial resolution and imaging depth.
Collapse
|
5
|
Zhang J, Long X, Zhang G, Ma Z, Li W, Wang Y, Yang F, Lin R, Li C, Lam KH. Broadband transparent ultrasound transducer with polymethyl methacrylate as matching layer for in vivo photoacoustic microscopy. PHOTOACOUSTICS 2023; 33:100548. [PMID: 38021293 PMCID: PMC10658616 DOI: 10.1016/j.pacs.2023.100548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/20/2023] [Accepted: 08/22/2023] [Indexed: 12/01/2023]
Abstract
Photoacoustic imaging (PAI) uniquely combines optics and ultrasound, presenting a promising role in biomedical imaging as a non-invasive and label-free imaging technology. As the traditional opaque ultrasound (US) transducers could hinder the transportation of the excitation light and limit the performance of PAI system, piezoelectric transparent ultrasonic transducers (TUTs) with indium tin oxide (ITO) electrodes have been developed to allow light transmission through the transducer and illuminate the sample directly. Nevertheless, without having transparent matching materials with appropriate properties, the bandwidth of those TUTs was generally narrow. In this work, we propose to employ polymethyl methacrylate (PMMA) as the matching layer material to improve the bandwidth of lithium niobate (LN)-based TUTs. The effects of PMMA matching layer on the performance of TUTs have been systematically studied. With the optimized PMMA matching layer, the very wide bandwidth of > 50 % could be achieved for the TUTs even with different transducer frequencies, leading to the great enhancement of axial resolution when compared to the similar reported work. In addition, the imaging performance of the developed TUT prototype has been evaluated in a PAI system and demonstrated by both phantom and in vivo small animal imaging.
Collapse
Affiliation(s)
- Jiaming Zhang
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xing Long
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Guangjie Zhang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Zhongtian Ma
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Wenzhao Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Yibing Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Fan Yang
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Riqiang Lin
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Changhui Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Kwok-Ho Lam
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, Scotland, UK
| |
Collapse
|
6
|
Lin R, Zhang J, Gao W, Wang X, Lv S, Lam KH, Gong X. A Miniature Multi-Functional Photoacoustic Probe. MICROMACHINES 2023; 14:1269. [PMID: 37374854 DOI: 10.3390/mi14061269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Photoacoustic technology is a promising tool to provide morphological and functional information in biomedical research. To enhance the imaging efficiency, the reported photoacoustic probes have been designed coaxially involving complicated optical/acoustic prisms to bypass the opaque piezoelectric layer of ultrasound transducers, but this has led to bulky probes and has hindered the applications in limited space. Though the emergence of transparent piezoelectric materials helps to save effort on the coaxial design, the reported transparent ultrasound transducers were still bulky. In this work, a miniature photoacoustic probe with an outer diameter of 4 mm was developed, in which an acoustic stack was made with a combination of transparent piezoelectric material and a gradient-index lens as a backing layer. The transparent ultrasound transducer exhibited a high center frequency of ~47 MHz and a -6 dB bandwidth of 29.4%, which could be easily assembled with a pigtailed ferrule of a single-mode fiber. The multi-functional capability of the probe was successfully validated through experiments of fluid flow sensing and photoacoustic imaging.
Collapse
Affiliation(s)
- Riqiang Lin
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiaming Zhang
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wen Gao
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiatian Wang
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shengmiao Lv
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kwok-Ho Lam
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Xiaojing Gong
- Research Center for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
7
|
Chen M, Jiang L, Cook C, Zeng Y, Vu T, Chen R, Lu G, Yang W, Hoffmann U, Zhou Q, Yao J. High-speed wide-field photoacoustic microscopy using a cylindrically focused transparent high-frequency ultrasound transducer. PHOTOACOUSTICS 2022; 28:100417. [PMID: 36299642 PMCID: PMC9589025 DOI: 10.1016/j.pacs.2022.100417] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 06/07/2023]
Abstract
Combining focused optical excitation and high-frequency ultrasound detection, optical-resolution photoacoustic microscopy (OR-PAM) can provide micrometer-level spatial resolution with millimeter-level penetration depth and has been employed in a variety of biomedical applications. However, it remains a challenge for OR-PAM to achieve a high imaging speed and a large field of view at the same time. In this work, we report a new approach to implement high-speed wide-field OR-PAM, using a cylindrically-focused transparent ultrasound transducer (CFT-UT). The CFT-UT is made of transparent lithium niobate coated with indium-tin-oxide as electrodes. A transparent cylindrical lens is attached to the transducer surface to provide an acoustic focal line with a length of 9 mm. The excitation light can pass directly through the CFT-UT from the above and thus enables a reflection imaging mode. High-speed imaging is achieved by fast optical scanning of the focused excitation light along the CFT-UT focal line. With the confocal alignment of the optical excitation and acoustic detection, a relatively high detection sensitivity is maintained over the entire scanning range. The CFT-UT-based OR-PAM system has achieved a cross-sectional frame rate of 500 Hz over the scanning range of 9 mm. We have characterized the system's performance on phantoms and demonstrated its application on small animal models in vivo. We expect the new CFT-UT-based OR-PAM will find matched biomedical applications that need high imaging speed over a large field of view.
Collapse
Affiliation(s)
- Maomao Chen
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Laiming Jiang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Clare Cook
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Yushun Zeng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Tri Vu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Ruimin Chen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Wei Yang
- Multidisciplinary Brain Protection Program, Department of Anaesthesiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Ulrike Hoffmann
- Multidisciplinary Brain Protection Program, Department of Anaesthesiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
8
|
Mirg S, Turner KL, Chen H, Drew PJ, Kothapalli SR. Photoacoustic imaging for microcirculation. Microcirculation 2022; 29:e12776. [PMID: 35793421 PMCID: PMC9870710 DOI: 10.1111/micc.12776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023]
Abstract
Microcirculation facilitates the blood-tissue exchange of nutrients and regulates blood perfusion. It is, therefore, essential in maintaining tissue health. Aberrations in microcirculation are potentially indicative of underlying cardiovascular and metabolic pathologies. Thus, quantitative information about it is of great clinical relevance. Photoacoustic imaging (PAI) is a capable technique that relies on the generation of imaging contrast via the absorption of light and can image at micron-scale resolution. PAI is especially desirable to map microvasculature as hemoglobin strongly absorbs light and can generate a photoacoustic signal. This paper reviews the current state of the art for imaging microvascular networks using photoacoustic imaging. We further describe how quantitative information about blood dynamics such as the total hemoglobin concentration, oxygen saturation, and blood flow rate is obtained using PAI. We also discuss its importance in understanding key pathophysiological processes in neurovascular, cardiovascular, ophthalmic, and cancer research fields. We then discuss the current challenges and limitations of PAI and the approaches that can help overcome these limitations. Finally, we provide the reader with an overview of future trends in the field of PAI for imaging microcirculation.
Collapse
Affiliation(s)
- Shubham Mirg
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin L. Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Haoyang Chen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick J. Drew
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA 17033, USA
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
9
|
Ren D, Li C, Shi J, Chen R. A Review of High-Frequency Ultrasonic Transducers for Photoacoustic Imaging Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1848-1858. [PMID: 34941509 DOI: 10.1109/tuffc.2021.3138158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photoacoustic imaging (PAI) is a new and rapidly growing hybrid biomedical imaging modality that combines the virtues of both optical and ultrasonic (US) imaging. The nature of the interaction between light and ultrasound waves allows PAI to make good use of the rich contrast produced by optics while retaining the imaging depths in US imaging. High-frequency US transducers are an important part of the PAI systems, used to detect the high-frequency and broad-bandwidth photoacoustic signals excited by the target tissues irradiated by short laser pulses. Advancement in high-frequency US transducer technology has influenced the boost of PAI to broad applications. Here, we present a review on high-frequency US transducer technologies for PAI applications, including advanced piezoelectric materials and representative transducers. In addition, we discuss the new challenges and directions facing the development of high-frequency US transducers for PAI applications.
Collapse
|
10
|
Chen H, Mirg S, Osman M, Agrawal S, Cai J, Biskowitz R, Minotto J, Kothapalli SR. A High Sensitivity Transparent Ultrasound Transducer based on PMN-PT for Ultrasound and Photoacoustic Imaging. IEEE SENSORS LETTERS 2021; 5:2500804. [PMID: 35707748 PMCID: PMC9191846 DOI: 10.1109/lsens.2021.3122097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We recently introduced piezoelectric lithium niobate (LN) based transparent ultrasound transducers (TUT) as a new platform for developing multimodal optical, ultrasound and photoacoustic imaging systems. However, LN based TUT is limited in its signal-to-noise ratio due to material's low piezoelectricity (d 33). In this paper, we report, for the first time, a 0.2 mm thick transparent lead magnesium niobate-lead titanate (PMN-PT) based TUT (PMN-PT-TUT) for ultrasound and photoacoustic applications and compared its performance with a 0.25 mm thick transparent LN based TUT (LN-TUT). To improve the ultrasound energy transmission efficiency, TUTs were fabricated with a two-matching-layer design. This resulted in a dual frequency response with center frequencies of 7.8 MHz/13.2 MHz and corresponding bandwidths of 28.2%/66.67% for PMN-PT-TUT, and center frequencies of 7.2 MHz/11.8 MHz and bandwidths of 36.1%/62.7% for LN-TUT. The optical transmission rate of PMN-PT-TUTs and LN-TUTs are measured as ~73% and ~91% respectively at 532 nm optical wavelength. The PMN-PT-TUT exhibited higher sensitivity compared to LN-TUT with a nearly three-fold higher pulse echo amplitude and more than two-fold higher photoacoustic amplitude. Furthermore, optical resolution photoacoustic microscopy (ORPAM) experiments on phantom targets demonstrated lateral resolutions of 7 μm and 5.1 μm, and axial resolutions of 285.6 μm and 375.9 μm for PMN-PT-TUT and LN-TUT respectively. These results indicated that PMN-PT is a viable alternative to LN for developing TUT based multimodal ultrasound and photoacoustic imaging systems.
Collapse
Affiliation(s)
- Haoyang Chen
- Department of Biomedical Engineering, The Pennsylvania State University, State College, PA, 16802, USA
| | - Shubham Mirg
- Department of Biomedical Engineering, The Pennsylvania State University, State College, PA, 16802, USA
| | - Mohamed Osman
- Department of Biomedical Engineering, The Pennsylvania State University, State College, PA, 16802, USA
| | - Sumit Agrawal
- Department of Biomedical Engineering, The Pennsylvania State University, State College, PA, 16802, USA
| | - Jiacheng Cai
- Department of Biomedical Engineering, The Pennsylvania State University, State College, PA, 16802, USA
| | - Ryan Biskowitz
- Department of Biomedical Engineering, The Pennsylvania State University, State College, PA, 16802, USA
| | - Josiah Minotto
- Department of Biomedical Engineering, The Pennsylvania State University, State College, PA, 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, The Pennsylvania State University, State College, PA, 16802, USA
- Penn State Cancer Institute, The Pennsylvania State University, Hershey, PA, 17033, USA
- Graduate Program in Acoustics, The Pennsylvania State University, State College, PA 16802, USA
| |
Collapse
|
11
|
Abstract
Photoacoustic imaging is a new type of noninvasive, nonradiation imaging modality that combines the deep penetration of ultrasonic imaging and high specificity of optical imaging. Photoacoustic imaging systems employing conventional ultrasonic sensors impose certain constraints such as obstructions in the optical path, bulky sensor size, complex system configurations, difficult optical and acoustic alignment, and degradation of signal-to-noise ratio. To overcome these drawbacks, an ultrasonic sensor in the optically transparent form has been introduced, as it enables direct delivery of excitation light through the sensors. In recent years, various types of optically transparent ultrasonic sensors have been developed for photoacoustic imaging applications, including optics-based ultrasonic sensors, piezoelectric-based ultrasonic sensors, and microelectromechanical system-based capacitive micromachined ultrasonic transducers. In this paper, the authors review representative transparent sensors for photoacoustic imaging applications. In addition, the potential challenges and future directions of the development of transparent sensors are discussed.
Collapse
|
12
|
Fang C, Zou J. Acoustic-resolution photoacoustic microscopy based on an optically transparent focused transducer with a high numerical aperture. OPTICS LETTERS 2021; 46:3280-3283. [PMID: 34197436 DOI: 10.1364/ol.423287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
This Letter reports acoustic-resolution-photoacoustic microscopy (AR-PAM) based on a new optically transparent focused polyvinylidene fluoride (PVDF) transducer with a high acoustic numerical aperture (NA) of 0.64. Owing to the improved fabrication process, the new transducer has a much higher NA (0.64) than the previously reported low-NA transducer (NA=0.23). The acoustic center frequency and (pulse-echo) bandwidth are also increased to 36 and 44 MHz, respectively, which provides a 38 µm acoustic focal spot size and 210 µm acoustic depth of focus. For demonstration, AR-PAM was conducted on a twisted wire target in water and chicken breast tissue, and in vivo on a mouse tail. The imaging results show that high acoustic resolution and sensitivity can be achieved with a simple and compact setup to resolve the target at different depths. Such capabilities can be useful for the development of new AR-PAM systems for handheld, wearable, and even endoscopic imaging applications.
Collapse
|
13
|
Kim H, Lee H, Kim H, Chang JH. Elimination of Nontargeted Photoacoustic Signals for Combined Photoacoustic and Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1593-1604. [PMID: 33259296 DOI: 10.1109/tuffc.2020.3041634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a molecular imaging modality, photoacoustic (PA) imaging has been in the spotlight because it can provide an optical contrast image of physiological information and a relatively deep imaging depth. However, its sensitivity is limited despite the use of exogenous contrast agents due to the background PA signals generated from nontargeted absorbers, such as blood and boundaries between different biological tissues. In addition, clutter artifacts generated in both in-plane and out-of-plane imaging region degrade the sensitivity of PA imaging. We propose a method to eliminate the nontargeted PA signals. For this study, we used a dual-modal ultrasound (US)-PA contrast agent that is capable of generating both the backscattered US and PA signals in response to the transmitted US and irradiated light, respectively. The US images of the contrast agents are used to construct a masking image that contains the location information about the target site and is applied to the PA image acquired after contrast agent injection. In vitro and in vivo experimental results demonstrated that the masking image constructed using the US images makes it possible to completely remove nontargeted PA signals. The proposed method can be used to enhance the clear visualization of the target area in PA images.
Collapse
|
14
|
Liao T, Liu Y, Wu J, Deng L, Deng Y, Zeng L, Ji X. Centimeter-scale wide-field-of-view laser-scanning photoacoustic microscopy for subcutaneous microvasculature in vivo. BIOMEDICAL OPTICS EXPRESS 2021; 12:2996-3007. [PMID: 34168911 PMCID: PMC8194621 DOI: 10.1364/boe.426366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 05/25/2023]
Abstract
We developed a simple and compact laser-scanning photoacoustic microscopy (PAM) for imaging large areas of subcutaneous microvasculature in vivo. The reflection-mode PAM not only retains the advantage of high scanning speed for optical scanning, but also offers an imaging field-of-view (FOV) up to 20 × 20 mm2, which is the largest FOV available in laser-scanning models so far. The lateral resolution of the PAM system was measured to be 17.5 µm. Image experiments on subcutaneous microvasculature in in vivo mouse ears and abdomen demonstrate the system's potential for fast and high-resolution imaging for injuries and diseases of large tissues and organs.
Collapse
Affiliation(s)
- Tangyun Liao
- State Key Laboratory of Precision Electronics Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- T. Liao and Y. Liu contributed equally to this work
| | - Yuan Liu
- State Key Laboratory of Precision Electronics Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- T. Liao and Y. Liu contributed equally to this work
| | - Junwei Wu
- State Key Laboratory of Precision Electronics Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- Doppler Electronic Technologies Incorporated Company, Guangzhou 510530, China
| | - Lijun Deng
- State Key Laboratory of Precision Electronics Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- Key Lab of Optic-Electronic and Communication, Jiangxi Science and Technology Normal University, Nanchang 330038, China
| | - Yu Deng
- Doppler Electronic Technologies Incorporated Company, Guangzhou 510530, China
| | - Lvming Zeng
- State Key Laboratory of Precision Electronics Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
- Key Lab of Optic-Electronic and Communication, Jiangxi Science and Technology Normal University, Nanchang 330038, China
| | - Xuanrong Ji
- State Key Laboratory of Precision Electronics Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
15
|
High-Sensitivity Optical-Resolution Photoacoustic Microscopy with an Optical-Acoustic Combiner Based on an Off-Axis Parabolic Acoustic Mirror. PHOTONICS 2021. [DOI: 10.3390/photonics8040127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical-resolution photoacoustic microscopy (OR-PAM) is a promising noninvasive biomedical imaging technology with label-free optical absorption contrasts. Performance of OR-PAM is usually closely related to the optical-acoustic combiner. In this study, we propose an optical-acoustic combiner based on a flat acoustic reflector and an off-axis parabolic acoustic mirror with a conical bore. Quantitative simulation and experiments demonstrated that this combiner can provide better acoustic focusing performance and detection sensitivity. Moreover, OR-PAM is based on the combiner suffer low optical disorders, which guarantees the good resolution. In vivo experiments of the mouse brain and the iris were also conducted to show the practicability of the combiner in biomedicine. This proposed optical-acoustic combiner realizes a high-quality optical-acoustic confocal alignment with minimal optical disorders and acoustic insertion loss, strong acoustic focusing, and easy implementation. These characteristics might be useful for improving the performance of OR-PAM.
Collapse
|
16
|
Park J, Park B, Kim TY, Jung S, Choi WJ, Ahn J, Yoon DH, Kim J, Jeon S, Lee D, Yong U, Jang J, Kim WJ, Kim HK, Jeong U, Kim HH, Kim C. Quadruple ultrasound, photoacoustic, optical coherence, and fluorescence fusion imaging with a transparent ultrasound transducer. Proc Natl Acad Sci U S A 2021; 118:e1920879118. [PMID: 33836558 PMCID: PMC7980418 DOI: 10.1073/pnas.1920879118] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ultrasound and optical imagers are used widely in a variety of biological and medical applications. In particular, multimodal implementations combining light and sound have been actively investigated to improve imaging quality. However, the integration of optical sensors with opaque ultrasound transducers suffers from low signal-to-noise ratios, high complexity, and bulky form factors, significantly limiting its applications. Here, we demonstrate a quadruple fusion imaging system using a spherically focused transparent ultrasound transducer that enables seamless integration of ultrasound imaging with photoacoustic imaging, optical coherence tomography, and fluorescence imaging. As a first application, we comprehensively monitored multiparametric responses to chemical and suture injuries in rats' eyes in vivo, such as corneal neovascularization, structural changes, cataracts, and inflammation. As a second application, we successfully performed multimodal imaging of tumors in vivo, visualizing melanomas without using labels and visualizing 4T1 mammary carcinomas using PEGylated gold nanorods. We strongly believe that the seamlessly integrated multimodal system can be used not only in ophthalmology and oncology but also in other healthcare applications with broad impact and interest.
Collapse
Affiliation(s)
- Jeongwoo Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Byullee Park
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Tae Yeong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Sungjin Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Woo June Choi
- School of Electrical and Electronics Engineering, Chung-Ang University, 06974 Seoul, Republic of Korea
| | - Joongho Ahn
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Dong Hee Yoon
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 41944 Daegu, Republic of Korea
| | - Jeongho Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 41944 Daegu, Republic of Korea
| | - Seungwan Jeon
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Donghyun Lee
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Uijung Yong
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Jinah Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Won Jong Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Hong Kyun Kim
- Department of Ophthalmology, School of Medicine, Kyungpook National University, 41944 Daegu, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea;
| | - Hyung Ham Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea;
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| | - Chulhong Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea;
- Medical Device Innovation Center, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Creative IT Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology, 37673 Pohang, Republic of Korea
| |
Collapse
|
17
|
Jang J, Kim J, Lee HJ, Chang JH. Transrectal Ultrasound and Photoacoustic Imaging Probe for Diagnosis of Prostate Cancer. SENSORS 2021; 21:s21041217. [PMID: 33572287 PMCID: PMC7915711 DOI: 10.3390/s21041217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/27/2022]
Abstract
A combined transrectal ultrasound and photoacoustic (TRUS-PA) imaging probe was developed for the clear visualization of morphological changes and microvasculature distribution in the prostate, as this is required for accurate diagnosis and biopsy. The probe consisted of a miniaturized 128-element 7 MHz convex array transducer with 134.5° field-of-view (FOV), a bifurcated optical fiber bundle, and two optical lenses. The design goal was to make the size of the TRUS-PA probe similar to that of general TRUS probes (i.e., about 20 mm), for the convenience of the patients. New flexible printed circuit board (FPCB), acoustic structure, and optical lens were developed to meet the requirement of the probe size, as well as to realize a high-performance TRUS-PA probe. In visual assessment, the PA signals obtained with the optical lens were 2.98 times higher than those without the lens. Moreover, the in vivo experiment with the xenograft BALB/c (Albino, Immunodeficient Inbred Strain) mouse model showed that TRUS-PA probe was able to acquire the entire PA image of the mouse tight behind the porcine intestine about 25 mm depth. From the ex vivo and in vivo experimental results, it can be concluded that the developed TRUS-PA probe is capable of improving PA image quality, even though the TRUS-PA probe has a cross-section size and an FOV comparable to those of general TRUS probes.
Collapse
Affiliation(s)
- Jihun Jang
- Department of Electronic Engineering, Sogang University, Seoul 04107, Korea;
| | - Jinwoo Kim
- Department of Information and Communnication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea;
| | - Hak Jong Lee
- Department of Radiology, Seoul National University of Bundang Hospital, Seongnam-si 13620, Korea;
| | - Jin Ho Chang
- Department of Information and Communnication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea;
- Correspondence: ; Tel.: +82-53-785-6330
| |
Collapse
|