1
|
Growth and mechanobiology of the tendon-bone enthesis. Semin Cell Dev Biol 2022; 123:64-73. [PMID: 34362655 PMCID: PMC8810906 DOI: 10.1016/j.semcdb.2021.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Tendons are cable-like connective tissues that transfer both active and passive forces generated by skeletal muscle to bone. In the mature skeleton, the tendon-bone enthesis is an interfacial zone of transitional tissue located between two mechanically dissimilar tissues: compliant, fibrous tendon to rigid, dense mineralized bone. In this review, we focus on emerging areas in enthesis development related to its structure, function, and mechanobiology, as well as highlight established and emerging signaling pathways and physiological processes that influence the formation and adaptation of this important transitional tissue.
Collapse
|
2
|
Keil S, Gupta M, Brand M, Knopf F. Heparan sulfate proteoglycan expression in the regenerating zebrafish fin. Dev Dyn 2021; 250:1368-1380. [PMID: 33638212 DOI: 10.1002/dvdy.321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/16/2021] [Accepted: 02/10/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Heparan sulfate proteoglycan (HSPG) expression is found in many animal tissues and regulates growth factor signaling such as of Fibroblast growth factors (Fgf), Wingless/Int (Wnt) and Hedgehog (HH). Glypicans, which are GPI (glycosylphosphatidylinositol)-anchored proteins, and transmembrane-anchored syndecans represent two major HSPG protein families whose involvement in development and disease has been demonstrated. Their participation in regenerative processes both of the central nervous system and of regenerating limbs is well documented. However, whether HSPG are expressed in regenerating zebrafish fins, is currently unknown. RESULTS Here, we carried out a systematic screen of glypican and syndecan mRNA expression in regenerating zebrafish fins during the outgrowth phase. We find that 8 of the 10 zebrafish glypicans and the three known zebrafish syndecans show specific expression at 3 days post amputation. Expression is found in different domains of the regenerate, including the distal and lateral basal layers of the wound epidermis, the distal most blastema and more proximal blastema regions. CONCLUSIONS HSPG expression is prevalent in regenerating zebrafish fins. Further research is needed to delineate the function of glypican and syndecan action during zebrafish fin regeneration.
Collapse
Affiliation(s)
- Sebastian Keil
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany.,Technische Universität Dresden, Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Mansi Gupta
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany.,Merus N.V, Utrecht, Netherlands
| | - Michael Brand
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Franziska Knopf
- Technische Universität Dresden, CRTD - Center for Regenerative Therapies TU Dresden, Dresden, Germany.,Technische Universität Dresden, Center for Healthy Aging TU Dresden, Dresden, Germany
| |
Collapse
|
3
|
Vieira WA, Goren S, McCusker CD. ECM-mediated positional cues are able to induce pattern, but not new positional information, during axolotl limb regeneration. PLoS One 2021; 16:e0248051. [PMID: 33667253 PMCID: PMC7935289 DOI: 10.1371/journal.pone.0248051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
The Mexican Axolotl is able to regenerate missing limb structures in any position along the limb axis throughout its life and serves as an excellent model to understand the basic mechanisms of endogenous regeneration. How the new pattern of the regenerating axolotl limb is established has not been completely resolved. An accumulating body of evidence indicates that pattern formation occurs in a hierarchical fashion, which consists of two different types of positional communications. The first type (Type 1) of communication occurs between connective tissue cells, which retain memory of their original pattern information and use this memory to generate the pattern of the regenerate. The second type (Type 2) of communication occurs from connective tissue cells to other cell types in the regenerate, which don’t retain positional memory themselves and arrange themselves according to these positional cues. Previous studies suggest that molecules within the extracellular matrix (ECM) participate in pattern formation in developing and regenerating limbs. However, it is unclear whether these molecules play a role in Type 1 or Type 2 positional communications. Utilizing the Accessory Limb Model, a regenerative assay, and transcriptomic analyses in regenerates that have been reprogrammed by treatment with Retinoic Acid, our data indicates that the ECM likely facilities Type-2 positional communications during limb regeneration.
Collapse
Affiliation(s)
- Warren A. Vieira
- Department of Biology, University of Massachusetts, Boston, MA, United States of America
| | - Shira Goren
- Department of Biology, University of Massachusetts, Boston, MA, United States of America
| | - Catherine D. McCusker
- Department of Biology, University of Massachusetts, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
4
|
Liu CH, Kuo YC, Wang CY, Hsu CC, Ho YJ, Chiang YC, Mai FD, Lin WJ, Liao WC. Syndecan-3 contributes to the regulation of the microenvironment at the node of Ranvier following end-to‑side neurorrhaphy: sodium image analysis. Histochem Cell Biol 2020; 155:355-367. [PMID: 33170350 DOI: 10.1007/s00418-020-01936-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Syndecan-3 (SDC3) and Syndecan-4 (SDC4) are distributed throughout the nervous system (NS) and are favourable factors in motor neuron development. They are also essential for regulation of neurite outgrowth in the CNS. However, their roles in the reconstruction of the nodes of Ranvier after peripheral nerve injury (PNI) are still unclear. Present study used an in vivo model of end-to-side neurorrhaphy (ESN) for 1-3 months. The recovery of neuromuscular function was evaluated by grooming test. Expression and co-localization of SDC3, SDC4, and Nav1.6 channel (Nav1.6) at regenerating axons were detected by proximity ligation assay and confocal microscopy after ESN. Time-of-flight secondary ion mass spectrometry was used for imaging ions distribution on tissue. Our data showed that the re-clustering of sodium and Nav1.6 at nodal regions of the regenerating nerve corresponded to the distribution of SDC3 after ESN. Furthermore, the re-establishment of sodium and Nav1.6 correlated with the recovery of muscle power 3 months after ESN. This study suggested syndecans may involve in stabilizing Nav1.6 and further modulate the distribution of sodium at nodal regions after remyelination. The efficiency of sodium re-clustering was improved by the assistance of anionic syndecan, resulting in a better functional repair of PNI.
Collapse
Affiliation(s)
- Chiung-Hui Liu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung, 40201, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, No. 110, Sec.1, Jianguo N. Rd, Taichung, 40201, Taiwan
| | - Yu-Chen Kuo
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung, 40201, Taiwan
| | - Che-Yu Wang
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung, 40201, Taiwan
| | - Chao-Chun Hsu
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung, 40201, Taiwan
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung, 40201, Taiwan
| | - Yun-Chi Chiang
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung, 40201, Taiwan
| | - Fu-Der Mai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing St, Taipei, 11031, Taiwan
| | - Wei-Jhih Lin
- Department of Forensic Science, Central Police University, 56 Shu-Jen Road, Kwei-San, Taoyuan, 33304, Taiwan
| | - Wen-Chieh Liao
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd, Taichung, 40201, Taiwan.
- Department of Medical Education, Chung Shan Medical University Hospital, No. 110, Sec.1, Jianguo N. Rd, Taichung, 40201, Taiwan.
| |
Collapse
|
5
|
Liu Y, Xu Z, Wang Q, Jiang Y, Wang R, Chen S, Zhu J, Zhang Y, Chen J. Selective regulation of RANKL/RANK/OPG pathway by heparan sulfate through the binding with estrogen receptor β in MC3T3-E1 cells. Int J Biol Macromol 2020; 161:1526-1534. [DOI: 10.1016/j.ijbiomac.2020.07.308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/12/2020] [Accepted: 07/29/2020] [Indexed: 02/09/2023]
|
6
|
Hayes AJ, Melrose J. Electro‐Stimulation, a Promising Therapeutic Treatment Modality for Tissue Repair: Emerging Roles of Sulfated Glycosaminoglycans as Electro‐Regulatory Mediators of Intrinsic Repair Processes. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research Hub Cardiff School of Biosciences Cardiff University Cardiff Wales CF10 3AX UK
| | - James Melrose
- Raymond Purves Bone and Joint Research Laboratory Kolling Institute Northern Sydney Local Health District Faculty of Medicine and Health University of Sydney Royal North Shore Hospital St. Leonards NSW 2065 Australia
- Graduate School of Biomedical Engineering University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
7
|
Lotfi L, Khakbiz M, Moosazadeh Moghaddam M, Bonakdar S. A biomaterials approach to Schwann cell development in neural tissue engineering. J Biomed Mater Res A 2019; 107:2425-2446. [DOI: 10.1002/jbm.a.36749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/08/2019] [Accepted: 05/07/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Leila Lotfi
- Department of Life Science Engineering, Faculty of New Sciences and TechnologiesUniversity of Tehran Tehran Iran
| | - Mehrdad Khakbiz
- Department of Life Science Engineering, Faculty of New Sciences and TechnologiesUniversity of Tehran Tehran Iran
| | | | - Shahin Bonakdar
- National Cell Bank DepartmentPasteur Institute of Iran Tehran Iran
| |
Collapse
|
8
|
Glycosaminoglycans compositional analysis of Urodele axolotl (Ambystoma mexicanum) and Porcine Retina. Glycoconj J 2019; 36:165-174. [PMID: 30963354 DOI: 10.1007/s10719-019-09863-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/27/2019] [Accepted: 03/05/2019] [Indexed: 12/26/2022]
Abstract
Retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), are major causes of blindness worldwide. Humans cannot regenerate retina, however, axolotl (Ambystoma mexicanum), a laboratory-bred salamander, can regenerate retinal tissue throughout adulthood. Classic signaling pathways, including fibroblast growth factor (FGF), are involved in axolotl regeneration. Glycosaminoglycan (GAG) interaction with FGF is required for signal transduction in this pathway. GAGs are anionic polysaccharides in extracellular matrix (ECM) that have been implicated in limb and lens regeneration of amphibians, however, GAGs have not been investigated in the context of retinal regeneration. GAG composition is characterized native and decellularized axolotl and porcine retina using liquid chromatography mass spectrometry. Pig was used as a mammalian vertebrate model without the ability to regenerate retina. Chondroitin sulfate (CS) was the main retinal GAG, followed by heparan sulfate (HS), hyaluronic acid, and keratan sulfate in both native and decellularized axolotl and porcine retina. Axolotl retina exhibited a distinctive GAG composition pattern in comparison with porcine retina, including a higher content of hyaluronic acid. In CS, higher levels of 4- and 6- O-sulfation were observed in axolotl retina. The HS composition was greater in decellularized tissues in both axolotl and porcine retina by 7.1% and 15.4%, respectively, and different sulfation patterns were detected in axolotl. Our findings suggest a distinctive GAG composition profile of the axolotl retina set foundation for role of GAGs in homeostatic and regenerative conditions of the axolotl retina and may further our understanding of retinal regenerative models.
Collapse
|
9
|
Heparan Sulfate Proteoglycans in Human Colorectal Cancer. Anal Cell Pathol (Amst) 2018; 2018:8389595. [PMID: 30027065 PMCID: PMC6031075 DOI: 10.1155/2018/8389595] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/14/2018] [Accepted: 05/20/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is the third most common cancer worldwide, accounting for more than 610,000 mortalities every year. Prognosis of patients is highly dependent on the disease stage at diagnosis. Therefore, it is crucial to investigate molecules involved in colorectal cancer tumorigenesis, with possible use as tumor markers. Heparan sulfate proteoglycans are complex molecules present in the cell membrane and extracellular matrix, which play vital roles in cell adhesion, migration, proliferation, and signaling pathways. In colorectal cancer, the cell surface proteoglycan syndecan-2 is upregulated and increases cell migration. Moreover, expression of syndecan-1 and syndecan-4, generally antitumor molecules, is reduced. Levels of glypicans and perlecan are also altered in colorectal cancer; however, their role in tumor progression is not fully understood. In addition, studies have reported increased heparan sulfate remodeling enzymes, as the endosulfatases. Therefore, heparan sulfate proteoglycans are candidate molecules to clarify colorectal cancer tumorigenesis, as well as important targets to therapy and diagnosis.
Collapse
|