1
|
Xu JR, Zheng PH, Zhang XX, Li JT, Chen HQ, Zhang ZL, Hao CG, Cao YL, Xian JA, Lu YP, Dai HF. Effects of Elephantopus scaber extract on growth, proximate composition, immunity, intestinal microbiota and resistance of the GIFT strain of Nile tilapia Oreochromis niloticus to Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2022; 127:280-294. [PMID: 35752371 DOI: 10.1016/j.fsi.2022.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/05/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to investigate the effects of Elephantopus scaber extract on the GIFT (genetic improvement of farmed tilapia) strain of Nile tilapia Oreochromis niloticus. A total of 800 tilapia with an initial body weight of 1.34 ± 0.09 g each were randomly divided into five groups. The tilapia in the control group (E0 group) were fed on a basal diet only. Meanwhile, tilapia in the four experimental groups were fed on a basal diet supplemented with 1 g/kg (E1 group), 3 g/kg (E2 group), 5 g/kg (E3 group), and 7 g/kg (E4 group) of E. scaber extract for 10 weeks. Results showed that the survival rate was higher in the experimental groups than in the control group. Compared with the control group, some growth parameters (FW, WGR, SGR, VSI, and HSI) were significantly improved in the E1 group and E2 group. The crude lipid content in the dorsal muscle and liver was lower in the E1 group than in the control group. After E. scaber extract supplementation, activities of immunity-related enzymes (ACP, AKP, T-AOC, SOD, CAT, GSH-Px and LZM) in plasma, liver, spleen and head kidney, and expressions of immunity-related genes (IL-1β, IFN-γ, TNF-α, and CCL-3) in liver, spleen and head kidney showed various degrees of improvement, while MDA content and Hsp70 expression level were decreased. The survival rate of tilapia increased in all the supplementation groups after Streptococcus agalactiae treatment. E. scaber extract addition changed the species composition, abundance, and diversity of intestinal microbiota in tilapia. These results demonstrate that E. scaber extract supplementation in diet can improve the growth, immunity, and disease resistance of GIFT against S. agalactiae. E. scaber extract supplementation can also change intestinal microbiota and reduce crude lipid content in dorsal muscle and liver. The above indicators show that the optimal dose of E. scaber extract for GIFT is 1 g/kg.
Collapse
Affiliation(s)
- Jia-Rui Xu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China; Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China
| | - Pei-Hua Zheng
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Xiu-Xia Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Jun-Tao Li
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Hui-Qin Chen
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Ze-Long Zhang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Chen-Guang Hao
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China
| | - Yan-Lei Cao
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China; Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China
| | - Jian-An Xian
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China; Ocean College of Hebei Agricultural University, Qinhuangdao, 066003, China; Zhanjiang Experimental Station of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China.
| | - Yao-Peng Lu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China.
| | - Hao-Fu Dai
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Science & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute of Tropical Agricultural Resources, Haikou 571101, China.
| |
Collapse
|
3
|
Liu X, Zhang B, Sohal IS, Bello D, Chen H. Is "nano safe to eat or not"? A review of the state-of-the art in soft engineered nanoparticle (sENP) formulation and delivery in foods. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 88:299-335. [PMID: 31151727 DOI: 10.1016/bs.afnr.2019.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With superior physicochemical properties, soft engineered nanoparticles (sENP) (protein, carbohydrate, lipids and other biomaterials) are widely used in foods. The preparation, functionalities, applications, transformations in gastrointestinal (GI) tract, and effects on gut microbiota of sENP directly incorporated for ingestion are reviewed herein. At the time of this review, there is no notable report of safety concerns of these nanomaterials found in the literature. Meanwhile, various beneficial effects have been demonstrated for the application of sENP. To address public perception and safety concerns of nanoscale materials in food, methodologies for evaluation of physiological effects of nanomaterials are reviewed. The combination of these complementary methods will be useful for the establishment of a comprehensive risk assessment system.
Collapse
Affiliation(s)
- Xiaobo Liu
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, United States
| | - Boce Zhang
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, United States.
| | - Ikjot Singh Sohal
- Purdue University, Center for Cancer Research, West Lafayette, IN, United States
| | - Dhimiter Bello
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, United States.
| | - Hongda Chen
- U.S. Department of Agriculture, National Institute of Food and Agriculture, Washington DC, United States.
| |
Collapse
|