1
|
Cui X, Meng X, Hu Z, Wu P, Yao H, Li M, Lin L. Analysis of multi-disulfide bridges for insulin aspart by stepwise reduction and differentiated alkylation. Anal Bioanal Chem 2024; 416:6725-6733. [PMID: 39472333 DOI: 10.1007/s00216-024-05597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024]
Abstract
Disulfide bridge, an important post-translation modification in protein, plays a key role in stabilizing three-dimensional structure of proteins, maintaining correct folded conformation, and thus regulating the biological activities. Disulfide bridge assignment is essential to understand the essence of life process and to develop protein pharmaceutical. In this study, a novel method termed as stepwise reduction and differentiated alkylation (SRDA) was developed analyzing disulfide connectivity for proteins. As a demonstration, three disulfide bridges in insulin aspart were successfully characterized using this SRDA method combined with LC-HRMSn. Firstly, tris (2-carboxyethyl) phosphine (TCEP) was used to partially reduce disulfide bridges with N-ethylmaleimide (NEM) used to block the generated free thiol. Then, dithiothreitol (DTT) was used to reduce the rest disulfide bonds with iodoacetamide (IAM) used to block the newly generated free thiol. After that, an LC-HRMSn method was established to assign disulfide connectivity for an insulin aspart study material, based on the different mass shifts arising from differentiated alkylation. Moreover, this approach allows for the quantitative analysis of various disulfide bond pairings, which can be applied to studies on the consistency and stability among different batches of samples. The results show that SRDA is a valuable tool for reliable quality control and quality assessment of disulfide-rich proteins such as insulin analogues.
Collapse
Affiliation(s)
- Xinling Cui
- Department of Bioengineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Xiaoguang Meng
- National Engineering Research Center for Protein Drugs, Beijing C&N International Sci-tech Co., Ltd., Beijing, 102206, PR China
| | - Zhishang Hu
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Peize Wu
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Huan Yao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, PR China
| | - Ming Li
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing, 100029, PR China.
| | - Ling Lin
- Department of Bioengineering, Beijing Technology and Business University, Beijing, 100048, PR China.
| |
Collapse
|
2
|
Lee ZY, Lee WH, Lim JS, Ali AAA, Loo JSE, Wibowo A, Mohammat MF, Foo JB. Golgi apparatus targeted therapy in cancer: Are we there yet? Life Sci 2024; 352:122868. [PMID: 38936604 DOI: 10.1016/j.lfs.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Membrane trafficking within the Golgi apparatus plays a pivotal role in the intracellular transportation of lipids and proteins. Dysregulation of this process can give rise to various pathological manifestations, including cancer. Exploiting Golgi defects, cancer cells capitalise on aberrant membrane trafficking to facilitate signal transduction, proliferation, invasion, immune modulation, angiogenesis, and metastasis. Despite the identification of several molecular signalling pathways associated with Golgi abnormalities, there remains a lack of approved drugs specifically targeting cancer cells through the manipulation of the Golgi apparatus. In the initial section of this comprehensive review, the focus is directed towards delineating the abnormal Golgi genes and proteins implicated in carcinogenesis. Subsequently, a thorough examination is conducted on the impact of these variations on Golgi function, encompassing aspects such as vesicular trafficking, glycosylation, autophagy, oxidative mechanisms, and pH alterations. Lastly, the review provides a current update on promising Golgi apparatus-targeted inhibitors undergoing preclinical and/or clinical trials, offering insights into their potential as therapeutic interventions. Significantly more effort is required to advance these potential inhibitors to benefit patients in clinical settings.
Collapse
Affiliation(s)
- Zheng Yang Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Wen Hwei Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jing Sheng Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Afiqah Ali Ajmel Ali
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
3
|
Maldonado H, Leyton L. CSK-mediated signalling by integrins in cancer. Front Cell Dev Biol 2023; 11:1214787. [PMID: 37519303 PMCID: PMC10382208 DOI: 10.3389/fcell.2023.1214787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Cancer progression and metastasis are processes heavily controlled by the integrin receptor family. Integrins are cell adhesion molecules that constitute the central components of mechanosensing complexes called focal adhesions, which connect the extracellular environment with the cell interior. Focal adhesions act as key players in cancer progression by regulating biological processes, such as cell migration, invasion, proliferation, and survival. Src family kinases (SFKs) can interplay with integrins and their downstream effectors. SFKs also integrate extracellular cues sensed by integrins and growth factor receptors (GFR), transducing them to coordinate metastasis and cell survival in cancer. The non-receptor tyrosine kinase CSK is a well-known SFK member that suppresses SFK activity by phosphorylating its specific negative regulatory loop (C-terminal Y527 residue). Consequently, CSK may play a pivotal role in tumour progression and suppression by inhibiting SFK oncogenic effects in several cancer types. Remarkably, CSK can localise near focal adhesions when SFKs are activated and even interact with focal adhesion components, such as phosphorylated FAK and Paxillin, among others, suggesting that CSK may regulate focal adhesion dynamics and structure. Even though SFK oncogenic signalling has been extensively described before, the specific role of CSK and its crosstalk with integrins in cancer progression, for example, in mechanosensing, remain veiled. Here, we review how CSK, by regulating SFKs, can regulate integrin signalling, and focus on recent discoveries of mechanotransduction. We additionally examine the cross talk of integrins and GFR as well as the membrane availability of these receptors in cancer. We also explore new pharmaceutical approaches to these signalling pathways and analyse them as future therapeutic targets.
Collapse
Affiliation(s)
- Horacio Maldonado
- Receptor Dynamics in Cancer Laboratory, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Selikhanov G, Atamas A, Yukhimchuk D, Fufina T, Vasilieva L, Gabdulkhakov A. Stabilization of Cereibacter sphaeroides Photosynthetic Reaction Center by the Introduction of Disulfide Bonds. MEMBRANES 2023; 13:154. [PMID: 36837657 PMCID: PMC9967408 DOI: 10.3390/membranes13020154] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The photosynthetic reaction center of the purple nonsulfur bacterium Cereibacter sphaeroides is a useful model for the study of mechanisms of photoinduced electron transfer and a promising component for photo-bio-electrocatalytic systems. The basic research and technological applications of this membrane pigment-protein complex require effective approaches to increase its structural stability. In this work, a rational design approach to genetically modify the reaction centers by introducing disulfide bonds is used. This resulted in significantly increasing the thermal stability of some of the mutant pigment-protein complexes. The formation of the S-S bonds was confirmed by X-ray crystallography as well as SDS-PAGE, and the optical properties of the reaction centers were studied. The genetically modified reaction centers presented here preserved their ability for photochemical charge separation and could be of interest for basic science and biotechnology.
Collapse
Affiliation(s)
- Georgii Selikhanov
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290 Pushchino, Moscow Region, Russia
- Federal Research Center Pushchino Scientific Center for Biological Research PSCBR, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, 142290 Pushchino, Moscow Region, Russia
| | - Anastasia Atamas
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290 Pushchino, Moscow Region, Russia
| | - Diana Yukhimchuk
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290 Pushchino, Moscow Region, Russia
| | - Tatiana Fufina
- Federal Research Center Pushchino Scientific Center for Biological Research PSCBR, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, 142290 Pushchino, Moscow Region, Russia
| | - Lyudmila Vasilieva
- Federal Research Center Pushchino Scientific Center for Biological Research PSCBR, Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya 2, 142290 Pushchino, Moscow Region, Russia
| | - Azat Gabdulkhakov
- Institute of Protein Research, Russian Academy of Sciences, Institutskaya 4, 142290 Pushchino, Moscow Region, Russia
| |
Collapse
|
5
|
Sun G, Ayrapetov MK. Dissection of the catalytic and regulatory structure-function relationships of Csk protein tyrosine kinase. Front Cell Dev Biol 2023; 11:1148352. [PMID: 36936693 PMCID: PMC10016382 DOI: 10.3389/fcell.2023.1148352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Protein tyrosine kinases (PTKs) are a large enzyme family that regulates many cellular processes. The key to their broad role in signaling is their tunable substrate specificity and regulatory mechanisms that allow each to respond to appropriate regulatory signals and phosphorylate the correct physiological protein substrates. Thus, in addition to the general PTK catalytic platform, each PTK acquires unique structural motifs that confer a unique combination of catalytic and regulatory properties. Understanding the structural basis for these properties is essential for understanding and manipulating the PTK-based signaling networks in normal and cancer cells. C-terminal Src kinase (Csk) and its homolog, Csk-homologous kinase (Chk), phosphorylate Src family kinases on a C-terminal Tyr residue and negatively regulate their kinase activity. While this regulatory function is biologically essential, Csk and Chk have also been excellent model PTKs for dissecting the structural basis of PTK catalysis and regulation. In this article, we review the structure-function studies of Csk and Chk that shed light on the regulatory and catalytic mechanisms of protein tyrosine kinases in general.
Collapse
|
6
|
An overview on the exploring the interaction of inorganic nanoparticles with microtubules for the advancement of cancer therapeutics. Int J Biol Macromol 2022; 212:358-369. [PMID: 35618086 DOI: 10.1016/j.ijbiomac.2022.05.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 01/01/2023]
Abstract
Targeting microtubules (MTs), dynamic and stable proteins in cells, by different ligands have been reported to be a potential strategy to combat cancer cells. Inorganic nanoparticles (NPs) have been widely used as anticancer, antibacterial, and free radical scavenging agents, where the come in contact with biological macromolecules. The interaction between the NPs and biological macromolecules like MTs frequently occurs through different mechanisms. A prerequisite for a detailed exploration of MT structures and functions for biomedical applications like cancer therapy is to investigate profoundly the mechanisms involved in MT-NP interactions, for which the full explanation and characterization of the parameters that are responsible for the formation of a NP-protein complex are crucial. Therefore, in view of the fact that the goal of the rational NP-based future drug design and new therapies is to rely on the information of the structural details and protein-NPs binding mechanisms to manipulate the process of developing new potential drugs, a comprehensive investigation of the essence of the molecular recognition/interaction is also of considerable importance. In the present review, first, the microtubule (MT) structure and its binding sites upon interaction with MT stabilizing agents (MSAs) and MT destabilizing agents (MDAs) are introduced and rationalized. Next, MT targeting in cancer therapy and interaction of NPs with MTs are discussed. Furthermore, interaction of NPs with proteins and the manipulation of protein corona (PC), experimental techniques, and direct interaction of NPs with MTs, are discussed, and finally the challenges and future perspective of the field are introduced. We envision this review can provide useful information on the manipulation of the MT lattice for the progress of cancer nanomedicine.
Collapse
|
7
|
Qiang J, Xu Z, Li Y, Wang H, Zhang Y. Carboxypeptidase Y Assisted Disulfide-Bond Identification with Linearized Database Search. Anal Chem 2021; 93:14940-14945. [PMID: 34735112 DOI: 10.1021/acs.analchem.1c03932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A disulfide bond is an important protein post-translational modification and plays a key role in regulating protein oxidation status, protein structure, and stability. Analysis of a disulfide bond using mass spectrometry is challenging because there lacks an efficient method to separate the disulfide-linked peptides from a complex protein digest, and the MS data requires sophisticated interpretation. Here, we developed a novel disulfide bond identification strategy, termed as "carboxypeptidase Y assisted disulfide-bond identification (CADI)". CADI is able to significantly reduce sample complexity by depleting ∼90% of the linear peptides while keeping the disulfide-bonded peptides. Furthermore, all CADI data can be directly analyzed by widely used protein database search engines, such as Mascot and MaxQuant. Our data show that CADI is able to sensitively identify disulfide bonds in peptides and proteins. However, CADI has not yet achieved a satisfied in-depth coverage on complex mammalian cell lysates due to the limited enzymatic activity of carboxypeptidase Y and low occurrences of disulfide bonds in a proteome. Altogether, CADI is a useful method that can get disulfide-linked peptides enriched and analyzed with regular search engines. CADI holds great potentials to deepen the analysis of disulfide bond and other types of cross-linked peptides on the proteome scale.
Collapse
Affiliation(s)
- Jiali Qiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Pudong, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhimin Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Pudong, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunxia Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Pudong, Shanghai 201210, China
| | - Hongbin Wang
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Pudong, Shanghai 201210, China
| |
Collapse
|
8
|
Prediction of disulfide bond engineering sites using a machine learning method. Sci Rep 2020; 10:10330. [PMID: 32587353 PMCID: PMC7316719 DOI: 10.1038/s41598-020-67230-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/04/2020] [Indexed: 11/19/2022] Open
Abstract
Disulfide bonds are covalently bonded sulfur atoms from cysteine pairs in protein structures. Due to the importance of disulfide bonds in protein folding and structural stability, artificial disulfide bonds are often engineered by cysteine mutation to enhance protein structural stability. To facilitate the experimental design, we implemented a method based on neural networks to predict amino acid pairs for cysteine mutations to form engineered disulfide bonds. The designed neural network was trained with high-resolution structures curated from the Protein Data Bank. The testing results reveal that the proposed method recognizes 99% of natural disulfide bonds. In the test with engineered disulfide bonds, the algorithm achieves similar accuracy levels with other state-of-the-art algorithms in published dataset and better performance for two comprehensively studied proteins with 70% accuracy, demonstrating potential applications in protein engineering. The neural network framework allows exploiting the full features in distance space, and therefore improves accuracy of the disulfide bond engineering site prediction. The source code and a web server are available at http://liulab.csrc.ac.cn/ssbondpre.
Collapse
|
9
|
Wiedemann C, Kumar A, Lang A, Ohlenschläger O. Cysteines and Disulfide Bonds as Structure-Forming Units: Insights From Different Domains of Life and the Potential for Characterization by NMR. Front Chem 2020; 8:280. [PMID: 32391319 PMCID: PMC7191308 DOI: 10.3389/fchem.2020.00280] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/23/2020] [Indexed: 12/22/2022] Open
Abstract
Disulfide bridges establish a fundamental element in the molecular architecture of proteins and peptides which are involved e.g., in basic biological processes or acting as toxins. NMR spectroscopy is one method to characterize the structure of bioactive compounds including cystine-containing molecules. Although the disulfide bridge itself is invisible in NMR, constraints obtained via the neighboring NMR-active nuclei allow to define the underlying conformation and thereby to resolve their functional background. In this mini-review we present shortly the impact of cysteine and disulfide bonds in the proteasome from different domains of life and give a condensed overview of recent NMR applications for the characterization of disulfide-bond containing biomolecules including advantages and limitations of the different approaches.
Collapse
Affiliation(s)
- Christoph Wiedemann
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Amit Kumar
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Andras Lang
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | | |
Collapse
|
10
|
Abdeldayem A, Raouf YS, Constantinescu SN, Moriggl R, Gunning PT. Advances in covalent kinase inhibitors. Chem Soc Rev 2020; 49:2617-2687. [DOI: 10.1039/c9cs00720b] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This comprehensive review details recent advances, challenges and innovations in covalent kinase inhibition within a 10 year period (2007–2018).
Collapse
Affiliation(s)
- Ayah Abdeldayem
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| | - Yasir S. Raouf
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| | | | - Richard Moriggl
- Institute of Animal Breeding and Genetics
- University of Veterinary Medicine
- 1210 Vienna
- Austria
| | - Patrick T. Gunning
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| |
Collapse
|
11
|
Cui L, Ma Y, Li M, Wei Z, Fei Q, Huan Y, Li H, Zheng L. Disulfide linkage assignment based on reducing electrochemistry and mass spectrometry using a lead electrode. Talanta 2019; 199:643-651. [PMID: 30952309 DOI: 10.1016/j.talanta.2019.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 11/29/2022]
Abstract
The study of disulfide linkage is a crucial part of the quality assessment of biopharmaceutical products because disulfide bonds stabilize the tertiary structure of proteins and maintain protein functions. Therefore, a suitable method is highly required for disulfide linkage assignment when nested disulfide bonds formed with closely spaced cysteine residues. A novel approach for disulfide linkage assignment of disulfide-rich peptides and proteins via electrochemical reduction on a lead electrode with mass spectrometry is presented in this paper. The method features partial electrochemical reduction and alkylation of peptides followed by alkylated peptide sequencing based on tandem mass spectrometry. Lead was chosen for the first time as an electrode material for disulfide bond reduction, because it has the advantages of maintenance free (only infrequent polishing needed), easy operation in DC mode, and reusability. Without any special sample preparation and any chemical reduction agents, disulfide bond in peptides can be cleaved rapidly. The new method was successfully tested with two peptides and one protein containing nested disulfide bonds.
Collapse
Affiliation(s)
- Lili Cui
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yongge Ma
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Ming Li
- Department of Chemistry, National Institute of Metrology, Beijing 100029, China.
| | - Zhonglin Wei
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiang Fei
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Yanfu Huan
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Hongmei Li
- Department of Chemistry, National Institute of Metrology, Beijing 100029, China
| | - Lianyou Zheng
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
12
|
|
13
|
Lv JM, Wang MY. In vitro generation and bioactivity evaluation of C-reactive protein intermediate. PLoS One 2018; 13:e0198375. [PMID: 29851992 PMCID: PMC5979025 DOI: 10.1371/journal.pone.0198375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022] Open
Abstract
The conformational conversion of pentameric C-reactive protein (pCRP) to monomeric CRP (mCRP) has been shown to play important roles in the action of CRP in inflammation regulation. In vivo studies revealed the origin of mCRP and provided insights into how pCRP dissociation affected its functions. However, the interplay and exact bioactivities of CRP isoforms still remain uncertain due to the rapid conformational conversion and complex milieu in vivo. Herein, we have used surface-immobilization of pCRP to generate a preservable intermediate with dual antigenicity expression of both pCRP and mCRP. The intermediate has been further shown to exhibit modified bioactivities, such as a high affinity with solution-phase pCRP and an enhanced capacity of complement interaction. These results thus not only provide the conformational conversion details of CRP, but also propose a simple way in vitro to study how the functions of CRP are tuned by distinct isoforms.
Collapse
Affiliation(s)
- Jian-Min Lv
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
| | - Ming-Yu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, P.R. China
- * E-mail:
| |
Collapse
|
14
|
Lakbub JC, Shipman JT, Desaire H. Recent mass spectrometry-based techniques and considerations for disulfide bond characterization in proteins. Anal Bioanal Chem 2017; 410:2467-2484. [PMID: 29256076 DOI: 10.1007/s00216-017-0772-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/09/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022]
Abstract
Disulfide bonds are important structural moieties of proteins: they ensure proper folding, provide stability, and ensure proper function. With the increasing use of proteins for biotherapeutics, particularly monoclonal antibodies, which are highly disulfide bonded, it is now important to confirm the correct disulfide bond connectivity and to verify the presence, or absence, of disulfide bond variants in the protein therapeutics. These studies help to ensure safety and efficacy. Hence, disulfide bonds are among the critical quality attributes of proteins that have to be monitored closely during the development of biotherapeutics. However, disulfide bond analysis is challenging because of the complexity of the biomolecules. Mass spectrometry (MS) has been the go-to analytical tool for the characterization of such complex biomolecules, and several methods have been reported to meet the challenging task of mapping disulfide bonds in proteins. In this review, we describe the relevant, recent MS-based techniques and provide important considerations needed for efficient disulfide bond analysis in proteins. The review focuses on methods for proper sample preparation, fragmentation techniques for disulfide bond analysis, recent disulfide bond mapping methods based on the fragmentation techniques, and automated algorithms designed for rapid analysis of disulfide bonds from liquid chromatography-MS/MS data. Researchers involved in method development for protein characterization can use the information herein to facilitate development of new MS-based methods for protein disulfide bond analysis. In addition, individuals characterizing biotherapeutics, especially by disulfide bond mapping in antibodies, can use this review to choose the best strategies for disulfide bond assignment of their biologic products. Graphical Abstract This review, describing characterization methods for disulfide bonds in proteins, focuses on three critical components: sample preparation, mass spectrometry data, and software tools.
Collapse
Affiliation(s)
- Jude C Lakbub
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 1251 Wescoe Hall Dr, Lawrence, KS, 66045, USA
| | - Joshua T Shipman
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 1251 Wescoe Hall Dr, Lawrence, KS, 66045, USA
| | - Heather Desaire
- Ralph N. Adams Institute for Bioanalytical Chemistry, Department of Chemistry, University of Kansas, 1251 Wescoe Hall Dr, Lawrence, KS, 66045, USA.
| |
Collapse
|
15
|
Liu D, Yuan Y, Xu R, Cowburn D. Domain interactions of C-terminal Src Kinase determined through NMR spectroscopy with segmental isotope labeling. Protein Cell 2017; 8:67-71. [PMID: 27815825 PMCID: PMC5233614 DOI: 10.1007/s13238-016-0333-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Dongsheng Liu
- iHuman Institute, ShanghaiTech University, 99 Haike Road, Pudong, Shanghai, 201210, China
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Ya Yuan
- iHuman Institute, ShanghaiTech University, 99 Haike Road, Pudong, Shanghai, 201210, China
| | - Rong Xu
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - David Cowburn
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
16
|
Disulfide bond characterization of human factor Xa by mass spectrometry through protein-level partial reduction. J Pharm Biomed Anal 2016; 132:238-246. [PMID: 27771573 DOI: 10.1016/j.jpba.2016.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 01/15/2023]
Abstract
Protein-level partial reduction was investigated as a novel sample preparation technique to characterize proteins with cystine knots or complex disulfide linkages. Human Factor Xa containing twelve disulfide bonds was selected as a model protein to demonstrate this methodology. Five in twelve disulfide linkages were characterized through conventional non-reduced samples while the other seven disulfide linkages containing cystine knots were successfully characterized though partially reduced samples. Each disulfide linkage was confirmed through product ions generated by an UPLC-ESI QTOF MS system equipped with data independent collision-induced dissociation (CID) acquisition. Free cysteines in the sample were also determined in this study.
Collapse
|