1
|
Zhang J, Cui H, Qiu J, Wang X, Zhong Y, Yao C, Yao L, Zheng Q, Xiong C. Stability of glycosylated complexes loaded with Epigallocatechin 3-gallate (EGCG). Food Chem 2023; 410:135364. [PMID: 36623458 DOI: 10.1016/j.foodchem.2022.135364] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 11/07/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
The application of Epigallocatechin-3-gallate (EGCG) in food industry was limited by its low stability in aqueous solutions and poor bioavailability in vivo. The novel EGCG glycosylated arachin nanoparticles (Ara-CMCS-EGCG) and EGCG glycosylated casein nanoparticles (Cas-CMCS-EGCG) were prepared to improve the stability and bioavailability of EGCG. The effect of different variables on the storage stability and the slow-release behavior of novel glycosylation complexes in nanoparticle background solution and artificial gastrointestinal fluid were investigated. The results showed that the DPPH scavenging activity of Ara-CMCS-EGCG and Cas-CMCS-EGCG were stable in temperature (25 ∼ 70 °C). EGCG could enhance the crosslinking effect of molecular particles in glycosylation complexes solution. The glycosylated protein nanoparticles were stable to acid-base and enzymolysis in simulated gastrointestinal fluid. The release rate of EGCG in simulated intestinal fluid was higher than that in simulated gastric fluid. The glycosylated protein carrier can not only release EGCG slowly, but also significantly improve the stability and bioavailability of EGCG in simulated gastrointestinal fluid.
Collapse
Affiliation(s)
- Jianyong Zhang
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310012, PR China; Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, PR China
| | - Hongchun Cui
- Tea Research Institute, Hangzhou Academy of Agricultural Science, Hangzhou 310024, PR China
| | - Jiahuan Qiu
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Xiaoqing Wang
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Yixin Zhong
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Caiping Yao
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Lanying Yao
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Qunxiong Zheng
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - ChunHua Xiong
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310012, PR China.
| |
Collapse
|
2
|
Hu S, Liu X, Zhang S, Quan D. An Overview of Taste-Masking Technologies: Approaches, Application, and Assessment Methods. AAPS PharmSciTech 2023; 24:67. [PMID: 36788171 DOI: 10.1208/s12249-023-02520-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
It is well-known that plenty of active pharmaceutical ingredients (API) inherently possess an unpleasant taste, which influences the acceptance of patients, especially children. Therefore, manufacturing taste-masked dosage forms has attracted a lot of attention. This review describes in detail the taste-masking technologies based on the difference in the taste transmission mechanism which is currently available. In particular, the review highlights the application of various methods, with a special focus on how to screen the appropriate masking technology according to the properties of API. Subsequently, we overviewed how to assess taste-masking efficacy, guiding researchers to rationally design taste-masking formulations.
Collapse
Affiliation(s)
- Shuqin Hu
- Institute of Advanced Drug Delivery Technology, No.10 Xinghuo Avenue Jiangbei New Area, Nanjing, 210032, People's Republic of China.,China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Xiaoxuan Liu
- China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Shuangshuang Zhang
- Institute of Advanced Drug Delivery Technology, No.10 Xinghuo Avenue Jiangbei New Area, Nanjing, 210032, People's Republic of China
| | - Danyi Quan
- Institute of Advanced Drug Delivery Technology, No.10 Xinghuo Avenue Jiangbei New Area, Nanjing, 210032, People's Republic of China.
| |
Collapse
|
3
|
Chen Y, Tao J, Wu K, Gu Y, Liu R, Luo J. One-pot preparation of inorganic-organic double-shell microcapsule with good barrier and mechanical property via photopolymerization. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
4
|
Zhang J, Cui H, Qiu J, Zhong Y, Yao C, Yao L, Zheng Q, Xiong C. Preparation and characterization of high embedding efficiency epigallocatechin-3-gallate glycosylated nanocomposites. Curr Res Food Sci 2022; 6:100399. [PMID: 36506110 PMCID: PMC9732124 DOI: 10.1016/j.crfs.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Glycosylated protein nano encapsulation was an efficient encapsulation technology, but its embedding rate for EGCG was not high, and the research on the embedding mechanism was relatively weak. Based on this, this study compared the embedding effect of glycosylated peanut globulin and glycosylated casein on EGCG. The embedding mechanism of EGCG with glycosylated protein was discussed by ultraviolet, fluorescence, infrared and fluorescence microscopy. Results revealed that the highest encapsulation efficiency of EGCG was 93.89 ± 1.11%. The neutral pH value and 0.3 mg/mL EGCG addition amount were suitable for EGCG glycosylated nanocomposites. The hydrogen bond between EGCG hydroxyl group and tyrosine and tryptophan of glycosylated protein is mainly non covalent. The encapsulation effect of EGCG glycosylated nanocomposites could be quenched by changing the polar environment and spatial structure of the group. The fluorescence characteristic and dispersibility of EGCG glycosylated peanut globin were higher than EGCG glycosylated casein. This study might provide a theoretical basis for EGCG microencapsulation technology and EGCG application in tea beverage and liquid tea food systems.
Collapse
Affiliation(s)
- Jianyong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, PR China,Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Hongchun Cui
- Tea Research Institute, Hangzhou Academy of Agricultural Science, Hangzhou, 310024, PR China
| | - Jiahuan Qiu
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Yixin Zhong
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Caiping Yao
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Lanying Yao
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Qunxiong Zheng
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou, 310012, PR China
| | - Chunhua Xiong
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou, 310012, PR China,Corresponding author.
| |
Collapse
|
5
|
Zhang L, Wu K, Chen Y, Liu R, Luo J. The preparation of linseed oil loaded graphene/polyaniline microcapsule via emulsion template method for self-healing anticorrosion coatings. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Synthesis and controlled release kinetics of pH-sensitive hollow polyaniline microspheres encapsuled with the corrosion inhibitor. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Sun Y, Fan S, Liang R, Ni X, Du Y, Wang J, Yang C. Design and characterization of starch/solid lipids hybrid microcapsules and their thermal stability with menthol. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Stark K, Hitchcock JP, Fiaz A, White AL, Baxter EA, Biggs S, McLaughlan JR, Freear S, Cayre OJ. Encapsulation of Emulsion Droplets with Metal Shells for Subsequent Remote, Triggered Release. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12272-12282. [PMID: 30860810 DOI: 10.1021/acsami.9b00087] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A two-step method to encapsulate an oil core with an impermeable shell has been developed. A thin metallic shell is deposited on the surface of emulsion droplets stabilized by metal nanoparticles. This thin shell is shown to prevent diffusion of the oil from within the core of the metal-shell microcapsules when placed in a continuous phase that fully dissolves the oil. The stabilizing nanoparticles are sterically stabilized by poly(vinyl pyrrolidone) chains and are here used as a catalyst/nucleation site at the oil-water interface to grow a secondary metal shell on the emulsion droplets via an electroless deposition process. This method provides the simplest scalable route yet to synthesize impermeable microcapsules with the added benefit that the final structure allows for drastically improving the overall volume of the encapsulated core to, in this case, >99% of the total volume. This method also allows for very good control over the microcapsule properties, and here we demonstrate our ability to tailor the final microcapsule density, capsule diameter, and secondary metal film thickness. Importantly, we also demonstrate that such impermeable microcapsule metal shells can be remotely fractured using ultrasound-based devices that are commensurate with technologies currently used in medical applications, which demonstrate the possibility to adapt these microcapsules for the delivery of cytotoxic drugs.
Collapse
Affiliation(s)
| | | | | | - Alison L White
- Australian Institute for Bioengineering and Nanotechnology , University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Elaine A Baxter
- Greater London Innovation Centre , Procter & Gamble , Egham , Surrey TW20 9NW , U.K
| | - Simon Biggs
- The University of Western Australia , Perth , WA 6009 , Australia
| | - James R McLaughlan
- Leeds Institute of Medical Research , University of Leeds, St. James's University Hospital , Leeds LS9 7TF , U.K
| | | | | |
Collapse
|
9
|
Encapsulation of lutein into swelled cornstarch granules: Structure, stability and in vitro digestion. Food Chem 2018; 268:362-368. [DOI: 10.1016/j.foodchem.2018.06.078] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/16/2018] [Indexed: 12/31/2022]
|
10
|
Biomaterial-assisted cell therapy in osteoarthritis: From mesenchymal stem cells to cell encapsulation. Best Pract Res Clin Rheumatol 2017; 31:730-745. [DOI: 10.1016/j.berh.2018.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/14/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023]
|