1
|
Ramos-Valdivia AC, Cerda-García-Rojas CM. Biosynthesis of oxindole alkaloids: Recent advances and challenges. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102648. [PMID: 39366288 DOI: 10.1016/j.pbi.2024.102648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/19/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
The monoterpenoid oxindole alkaloids (MOA) are specialized plant metabolites of pharmacological importance, whose biosynthesis is linked to a unique oxidative process of monoterpenoid indole alkaloids (MIA). These transformations arise from complex biosynthetic pathways defined by species, organs, tissues, and growth stages. Initial studies of their biosynthesis using labeled precursors date back more than five decades ago. This review shows the advances in this topic within the years 2022-2023, which highlight the research by integrative omics strategies, validating previously stated hypotheses. The MOA biosynthesis pathway is beginning to be elucidated, especially in the early and intermediate stages starting from MIA. Also, progress in the characterization of enzymes that regulate the process has been made. The discovery of a key enzyme in the formation of the spirooxindole scaffold represents a starting point for an enormous amount of work that remains to be done to clarify and understand the formation mechanisms of MOA.
Collapse
Affiliation(s)
- Ana C Ramos-Valdivia
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, Mexico.
| | - Carlos M Cerda-García-Rojas
- Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México 07360, Mexico
| |
Collapse
|
2
|
Rasheed HAM, Al-Majidi SMH. Synthesis, identification and evaluation of molecular docking and experimental anti-cancer and antioxidant activity of new spiro four membered ring derivatives bearing 5-nitro isatin. Nat Prod Res 2024; 38:2629-2636. [PMID: 36995026 DOI: 10.1080/14786419.2023.2195178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Spiro-5-nitro isatino aza-β-lactams were produced by a [2 + 2] cycloaddition of 5-nitro isatin Schiff bases [1-5] with different aromatic isocyanate and thioisocyanate. 1HNMR and 13CNMR as well as FTIR spectroscopies, were used to identify the structures of the obtained compounds. These spiro-5-nitro isatin aza- β-lactams interest to us due to their potential antioxidant and anticancer properties. The MTT assay was used to examine in vitro bioactivity testing against breast cancer (MCF-7) cell lines. From result data, compound 14 displayed IC50 values that were lower than those of the clinically used anticancer drug tamoxifen toward MCF-7 cells after 24 h while compound 9 after 48 h synthesized compounds [6-20] were evaluated for against antioxidant activity by using DPPH assay. In molecular docking, Promising compounds were used to reveal potential cytotoxic activity mechanisms.
Collapse
Affiliation(s)
| | - Suaad M H Al-Majidi
- Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
3
|
Zheng WH, Lv JF, He SM, Yu N, Zhou YQ, Yang YB, Liu LY, He KC, Wei Y, Jiang K. Relay Annulation of Ammonium Ylides with Oxindole-Derived α,β-Unsaturated Ketimines: Catalytic Construction of Spiro-polycyclic Oxindoles. Org Lett 2024; 26:5115-5119. [PMID: 38862412 DOI: 10.1021/acs.orglett.4c01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
An ammonium ylide-based relay annulation was disclosed, which uses DABCO as the catalyst and oxindole-derived α,β-unsaturated ketimines and γ-bromo-crotonates as the starting materials. This method enables the rapid assembly of a series of structurally novel spiro-polycyclic oxindoles containing a bicyclo[4.1.0]heptane moiety through simultaneous generation of three new bonds and two rings in one step under mild reaction conditions.
Collapse
Affiliation(s)
- Wei-Hao Zheng
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jing-Fang Lv
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shi-Mei He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ning Yu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yu-Qiang Zhou
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yun-Bo Yang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Lv-Yan Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Kui-Cheng He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Ye Wei
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Kun Jiang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| |
Collapse
|
4
|
Pu Y, Wang M, Tian W, Ge X, Zhu D, Wang C, Zeng Y, Tao F, Deng Y, Lu J. N-heterocyclic carbene catalyzed [2 + 3] annulation reaction for the synthesis of trifluoroethyl 3,2'-spirooxindole γ-lactam. RSC Adv 2024; 14:18453-18458. [PMID: 38860250 PMCID: PMC11163332 DOI: 10.1039/d4ra02252a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
Asymmetric catalytic processes promoted by N-heterocyclic carbenes (NHCs) hold great potential for the sustainable preparation of chiral molecules. However, catalyzing the reactions by manipulating the reactive intermediates is challenging. We report herein that the known NHC-catalyzed [3 + 2] annulation reaction between ketimine and enal can also be turned into a [2 + 3] annulation reaction for the highly enantioselective direct synthesis of trifluoroethyl 3,2'-spirooxindole γ-lactams (4) through timely catalysis of the intermediates. DFT calculations revealed that this transformation included the key step of the nucleophilic attack of the Breslow intermediate M2 derived from NHC and enal (2) to the unattacked ketimine (1). Our study demonstrates that it is possible to tune the desired selectivities through the dynamic catalysts of the reactive intermediates.
Collapse
Affiliation(s)
- Yiru Pu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College Shantou Guangdong Province 515000 China
| | - Wanrong Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Xian Ge
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Dikai Zhu
- Research and Development Centre, China Tobacco Sichuan Industrial Co. Ltd Chengdu 610066 China
| | - Chuanqi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Yingjie Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Feiyan Tao
- Research and Development Centre, China Tobacco Sichuan Industrial Co. Ltd Chengdu 610066 China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University Hong Kong SAR 999077 China
| |
Collapse
|
5
|
Wang F, Pan JQ, Shi RX, Ning R, Wu M. Diastereoselective Synthesis of Dihydrobenzofuran Spirooxindoles and Their Transformation into Benzofuroquinolinones by Ring Expansion of Oxindole Core. J Org Chem 2024; 89:5142-5147. [PMID: 38545874 DOI: 10.1021/acs.joc.3c02956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
A mild and efficient approach for the diastereoselective synthesis of dihydrobenzofuran spirooxindoles using 3-chlorooxindoles and imines is presented. This process involves a formal [4 + 1] annulation, yielding the product with excellent diastereoselectivity. Furthermore, a novel method for constructing benzofuroquinolinone scaffolds through the ring expansion of oxindoles has been established. This method involves a lactam ring expansion to the quinolinone skeleton. Besides, a one-pot procedure for creating benzofuroquinolinone scaffolds from 3-chlorooxindoles and imines is also provided.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Jia-Qi Pan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Ruo-Xian Shi
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Rui Ning
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Mingshu Wu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry & Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
| |
Collapse
|
6
|
Yuan H, Wu YZ, Fang YH, Chen CH, Liang C, Mo DL. Synthesis of Spirooxindole-1,2-oxazinan-5-ones through 2,2,2-Trifluoroethanol Promoted [3 + 3] Cycloaddition of N-Vinyl Oxindole Nitrones and Oxyallyl Cations. J Org Chem 2023; 88:16155-16166. [PMID: 37975833 DOI: 10.1021/acs.joc.3c01477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A variety of spirooxindole-1,2-oxazinan-5-one derivatives were prepared in moderate to excellent yields through 2,2,2-trifluoroethanol (TFE)-promoted [3 + 3] cycloaddition of N-vinyl oxindole nitrones with oxyallyl cations generated from α-tosyloxy ketones under mild reaction conditions. Mechanistic studies revealed that [3 + 3] cycloaddition might involve two possible reaction pathways, including direct [3 + 3] cycloaddition of N-vinyl oxindole ntirones with oxyallyl cations, or the addition of TFE to N-vinyl oxindole nitrones, sequential addition to oxyallyl cations, elimination, and cyclization. The present method features mild reaction conditions, broad substrate scope, good functional group tolerance, easy gram scalable preparation, and new applications of TFE.
Collapse
Affiliation(s)
- Hao Yuan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Yu-Zheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Yu-Han Fang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Chun-Hua Chen
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commision, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530008, China
| | - Cui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| |
Collapse
|
7
|
Dang X, Yu Z, Wang X, Li N. Eco-Friendly Cellulose-Based Nonionic Antimicrobial Polymers with Excellent Biocompatibility, Nonleachability, and Polymer Miscibility. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50344-50359. [PMID: 37862609 DOI: 10.1021/acsami.3c10902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
This study aims to prepare natural biomass-based nonionic antimicrobial polymers with excellent biocompatibility, nonleachability, antimicrobial activity, and polymer miscibility. Two new cellulose-based nonionic antimicrobial polymers (MIPA and MICA) containing many terminal indole groups were synthesized using a sustainable one-pot method. The structures and properties of the nonionic antimicrobial polymers were characterized using nuclear magnetic resonance hydrogen spectroscopy (1H NMR), infrared spectroscopy (FTIR), wide-angle X-ray diffractometry (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), gel chromatography (GPC), and other analytical techniques. The results showed that microcrystalline cellulose (MCC) molecules combined with indole derivatives through an esterification reaction to produce MICA and MIPA. The crystallinity of the prepared MICA and MIPA molecules decreased after MCC modification; their morphological structure changed from short fibrous to granular and showed better thermal stability and solubility. The paper diffusion method showed that both nonionic polymers had good bactericidal effects against the two common pathogenic bacteria Escherichia coli (E. coli, inhibition zone diameters >22 mm) and Staphylococcus aureus (S. aureus, inhibition zone diameters >38 mm). Moreover, MICA and MIPA showed good miscibility with biodegradable poly(vinyl alcohol) (PVA), and the miscible cellulose-based composite films (PVA-MICA and PVA-MIPA) showed good phase compatibility, light transmission, thermal stability (maximum thermal decomposition temperature >300 °C), biocompatibility, biological cell activity (no cytotoxicity), nonleachability, antimicrobial activity, and mechanical properties (maximum fracture elongation at >390%).
Collapse
Affiliation(s)
- Xugang Dang
- Institute for Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
- Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Zhenfu Yu
- Institute for Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Xuechuan Wang
- Institute for Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Nan Li
- Institute for Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| |
Collapse
|
8
|
Miankooshki FR, Bayat M, Nasri S, Samet NH. 1,3-Dipolar cycloaddition reactions of isatin-derived azomethine ylides for the synthesis of spirooxindole and indole-derived scaffolds: recent developments. Mol Divers 2023; 27:2365-2397. [PMID: 35925529 DOI: 10.1007/s11030-022-10510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/28/2022] [Indexed: 10/16/2022]
Abstract
The unique therapeutic and biological characteristics of spirooxindole have led to the presentation of numerous reactions for the synthesis of spirooxindoles through 1,3-Dipolar cycloaddition of highly reactive isatin-derived azomethine ylides with activated olefins as the main tool for the formation of spirocyclic oxindoles during the last 4 years. Therefore, there is a need to highlight the recent developments in this area, along with the representative synthetic methods and relevant reaction mechanisms from 2018 to 2021. The representative synthetic methodologies were listed in four sections based on the procedure to form the azomethine ylide species including isatins and amino acids, isatin-derived α-(trifluoromethyl)imine, isatins and benzylamines, and from isatin-derived cyclic imine 1,3-dipoles.
Collapse
Affiliation(s)
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Shima Nasri
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Narges Habibi Samet
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
9
|
Rupa K, Anbarasan P. Rhodium Catalyzed [4 + 1]-Annulation of o-Acylanilines with 3-Diazoindoline-2-imines. Org Lett 2023; 25:6357-6362. [PMID: 37602993 DOI: 10.1021/acs.orglett.3c02288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
An efficient rhodium catalyzed [4 + 1]-annulation of o-acylanilines with 3-diazoindoline-2-imines has been successfully accomplished for the synthesis of spiroindolines in good to excellent yield. The reaction occurs through formation of N-ylide followed by cyclization and showed good tolerance to various functional groups. Gram-scale synthesis, diastereoselective construction of tetrasubstituted indoline, synthesis of spirooxindole, and isolation of potential intermediates have also been demonstrated.
Collapse
Affiliation(s)
- Kavuri Rupa
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
10
|
Zhu H, Song X, Pan Y, Li M, Chen L, Xiao P, Du R, Dong Z, Yang CG. Design, synthesis, and biological evaluation of novel spirocyclic compounds as potential anti-glioblastoma agents. Eur J Med Chem 2023; 258:115595. [PMID: 37385078 DOI: 10.1016/j.ejmech.2023.115595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Glioblastoma (GBM) is an aggressive brain tumor with extremely limited clinical treatment options. Because of the blood-brain barrier (BBB), it is difficult for anti-GBM drug candidates to enter the brain to exert their therapeutic effects. The spirocyclic skeleton structure exhibits good lipophilicity and permeability, enabling small-molecule compounds to cross the BBB. Herein, we designed and synthesized novel 3-oxetanone-derived spirocyclic compounds containing a spiro[3.4]octane ring and determined their structure-activity relationship for antiproliferation in GBM cells. Among these, the chalcone-spirocycle hybrid 10m/ZS44 exhibited high antiproliferative activity in U251 cells and permeability in vitro. Furthermore, 10m/ZS44 activated the SIRT1/p53-mediated apoptosis pathway to inhibit proliferation in U251 cells, whereas it minimally impaired other cell-death pathways, such as pyroptosis or necroptosis. In a mouse xenograft model, 10m/ZS44 exhibited a substantial inhibitory effect on GBM tumor growth without showing obvious toxicity. Overall, 10m/ZS44 represents a promising spirocyclic compound for the treatment of GBM.
Collapse
Affiliation(s)
- Heping Zhu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomin Song
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yihui Pan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Chen
- Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Xiao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Du
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ze Dong
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Cai-Guang Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; Centre for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Liu J, Mallick S, Xie Y, Grassin C, Lucas B, Schölermann B, Pahl A, Scheel R, Strohmann C, Protzel C, Berg T, Merten C, Ziegler S, Waldmann H. Morphological Profiling Identifies the Motor Protein Eg5 as Cellular Target of Spirooxindoles. Angew Chem Int Ed Engl 2023; 62:e202301955. [PMID: 36929571 DOI: 10.1002/anie.202301955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/18/2023]
Abstract
Oxindoles and iso-oxindoles are natural product-derived scaffolds that provide inspiration for the design and synthesis of novel biologically relevant compound classes. Notably, the spirocyclic connection of oxindoles with iso-oxindoles has not been explored by nature but promises to provide structurally related compounds endowed with novel bioactivity. Therefore, methods for their efficient synthesis and the conclusive discovery of their cellular targets are highly desirable. We describe a selective RhIII -catalyzed scaffold-divergent synthesis of spirooxindole-isooxindoles and spirooxindole-oxindoles from differently protected diazooxindoles and N-pivaloyloxy aryl amides which includes a functional group-controlled Lossen rearrangement as key step. Unbiased morphological profiling of a corresponding compound collection in the Cell Painting assay efficiently identified the mitotic kinesin Eg5 as the cellular target of the spirooxindoles, defining a unique Eg5 inhibitor chemotype.
Collapse
Affiliation(s)
- Jie Liu
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Shubhadip Mallick
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Yusheng Xie
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Corentin Grassin
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Organic Chemistry II, University-Street 150, 44801, Bochum, Germany
| | - Belén Lucas
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Beate Schölermann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Axel Pahl
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
- Compound Management and Screening Center, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Rebecca Scheel
- Technical University Dortmund, Faculty of Chemistry, Inorganic Chemistry, Otto-Hahn-Street 6, 44221, Dortmund, Germany
| | - Carsten Strohmann
- Technical University Dortmund, Faculty of Chemistry, Inorganic Chemistry, Otto-Hahn-Street 6, 44221, Dortmund, Germany
| | - Christoph Protzel
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Thorsten Berg
- Leipzig University, Institute of Organic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Christian Merten
- Ruhr University Bochum, Faculty of Chemistry and Biochemistry, Organic Chemistry II, University-Street 150, 44801, Bochum, Germany
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Street 11, 44227, Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry, Chemical Biology, Otto-Hahn-Street 6, 44221, Dortmund, Germany
| |
Collapse
|
12
|
Khalaj M, Taherkhani M, Payen L, Klein A. A Sulfonic Acid Polyvinyl Pyridinium Ionic Liquid Catalyzes the Multi-Component Synthesis of Spiro-indoline-3,5'-pyrano[2,3- d]-pyrimidines and -Pyrazines. Molecules 2023; 28:molecules28093663. [PMID: 37175073 PMCID: PMC10180120 DOI: 10.3390/molecules28093663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
A sulfonated poly-4-vinyl pyridinium (PVPy-IL-B-SO3H) containing an acidic pyridinium/HSO3- ionic liquid moiety was prepared and used as a catalyst for the three-component reaction of malononitrile with 1-alkylindoline-2,3-diones and 1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione or methyl 5-hydroxy-1H-pyrazole-3-carboxylate, leading to methyl 6'-amino-5'-cyano-2-oxo-2'H-spiro[indoline-3,4'-pyrano[2,3-c]pyrazole]-3'-carboxylates or -3,4'-pyrano[2,3-d]pyrimidine]-6'-carbonitrile derivatives under ultrasonic irradiation conditions. The solid catalyst allows easy separation, is cheap, produces high yields under mild conditions, and does not require column chromatography for product isolation and purification.
Collapse
Affiliation(s)
- Mehdi Khalaj
- Department of Chemistry, Buinzahra Branch, Islamic Azad University, Buinzahra 1477893855, Iran
| | - Mahboubeh Taherkhani
- Department of Chemistry, Takestan Branch, Islamic Azad University, Takestan 3481949479, Iran
| | - Leo Payen
- Institute for Inorganic Chemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Greinstrasse 6, 50939 Köln, Germany
| | - Axel Klein
- Institute for Inorganic Chemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Greinstrasse 6, 50939 Köln, Germany
| |
Collapse
|
13
|
Huang Z, Lin J, Li M, Zhou YG, Yu Z. Zinc(II)-Catalyzed [2+2+1] Annulation of Internal Alkenes, Diazooxindoles, and Isocyanates to Access Spirooxindoles. Org Lett 2023; 25:2328-2332. [PMID: 36971357 DOI: 10.1021/acs.orglett.3c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Zinc(II)-catalyzed [2+2+1] annulation of internal alkenes, diazooxindoles, and isocyanates was successfully developed for the construction of multisubstituted spirooxindoles. This multicomponent transformation involves in situ generation of a sulfur-containing spirocyclic intermediate from the [4+1] annulation of diazooxindole to sulfonyl isocyanate, which subsequently reacts as a 1,3-dipole with the internal alkene, that is, α-oxo ketene dithioacetal, to furnish a formal [2+2+1] annulation in a one-pot manner. This synthetic protocol features a low-toxicity main group metal catalyst, readily available reagents, and ≤96% yields, offering an efficient route to multisubstituted spirooxindole derivatives.
Collapse
|
14
|
Wang Y, Yan L, Yan Y, Li S, Lu H, Liu J, Dong J. Dipolarophile-Controlled Regioselective 1,3-Dipolar Cycloaddition: A Switchable Divergent Access to Functionalized N-Fused Pyrrolidinyl Spirooxindoles. Int J Mol Sci 2023; 24:ijms24043771. [PMID: 36835183 PMCID: PMC9966135 DOI: 10.3390/ijms24043771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
N-fused pyrrolidinyl spirooxindole belongs to a class of privileged heterocyclic scaffolds and is prevalent in natural alkaloids and synthetic pharmaceutical molecules. To realize the switchable synthesis of divergent N-fused pyrrolidinyl spirooxindoles for further biological activity evaluation via a substrate-controlled strategy, a chemically sustainable, catalysis-free, and dipolarophile-controlled three-component 1,3-dipolar cycloaddition of isatin-derived azomethine ylides with diverse dipolarophiles is described in this work. A total of 40 functionalized N-fused pyrrolidinyl spirooxindoles were synthesized in 76-95% yields with excellent diastereoselectivities (up to >99:1 dr). The scaffolds of these products can be well-controlled by employing different 1,4-enedione derivatives as dipolarophiles in EtOH at room temperature. This study provides an efficient strategy to afford a spectrum of natural-like and potentially bioactive N-fused pyrrolidinyl spirooxindoles.
Collapse
Affiliation(s)
- Yongchao Wang
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
- Correspondence: or (Y.W.); (J.D.)
| | - Lijun Yan
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Yuxin Yan
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Sujin Li
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Hongying Lu
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Jia Liu
- Colleage of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Jianwei Dong
- Colleage of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
- Correspondence: or (Y.W.); (J.D.)
| |
Collapse
|
15
|
Nguyen TAM, Grzech D, Chung K, Xia Z, Nguyen TD, Dang TTT. Discovery of a cytochrome P450 enzyme catalyzing the formation of spirooxindole alkaloid scaffold. FRONTIERS IN PLANT SCIENCE 2023; 14:1125158. [PMID: 36818833 PMCID: PMC9936145 DOI: 10.3389/fpls.2023.1125158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Spirooxindole alkaloids feature a unique scaffold of an oxindole ring sharing an atom with a heterocyclic moiety. These compounds display an extensive range of biological activities such as anticancer, antibiotics, and anti-hypertension. Despite their structural and functional significance, the establishment and rationale of the spirooxindole scaffold biosynthesis are yet to be elucidated. Herein, we report the discovery and characterization of a cytochrome P450 enzyme from kratom (Mitragyna speciosa) responsible for the formation of the spirooxindole alkaloids 3-epi-corynoxeine (3R, 7R) and isocorynoxeine (3S, 7S) from the corynanthe-type (3R)-secoyohimbane precursors. Expression of the newly discovered enzyme in Saccharomyces cerevisiae yeast allows for the efficient in vivo and in vitro production of spirooxindoles. This discovery highlights the versatility of plant cytochrome P450 enzymes in building unusual alkaloid scaffolds and opens a gateway to access the prestigious spirooxindole pharmacophore and its derivatives.
Collapse
Affiliation(s)
- Tuan-Anh M. Nguyen
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Dagny Grzech
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Khoa Chung
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Zhicheng Xia
- Department of Chemistry, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Trinh-Don Nguyen
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Thu-Thuy T. Dang
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
16
|
Panda SS, Girgis AS, Aziz MN, Bekheit MS. Spirooxindole: A Versatile Biologically Active Heterocyclic Scaffold. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020618. [PMID: 36677676 PMCID: PMC9861573 DOI: 10.3390/molecules28020618] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
Spirooxindoles occupy an important place in heterocyclic chemistry. Many natural spirooxindole-containing compounds have been identified as bio-promising agents. Synthetic analogs have also been synthesized utilizing different pathways. The present article summarizes the recent development of both natural and synthetic spirooxindole-containing compounds prepared from isatin or its derivatives reported in the last five years. The spirooxindoles are categorized based on their mentioned biological properties.
Collapse
Affiliation(s)
- Siva S. Panda
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30912, USA
- Correspondence: or
| | - Adel S. Girgis
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Marian N. Aziz
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mohamed S. Bekheit
- Department of Pesticide Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
17
|
Synthesis, Structure and Stereochemistry of Dispirocompounds Based on Imidazothiazolotriazine and Pyrrolidineoxindole. Int J Mol Sci 2022; 23:ijms232213820. [PMID: 36430300 PMCID: PMC9699425 DOI: 10.3390/ijms232213820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Methods for the synthesis of two types of isomeric dispirocompounds based on imidazothiazolotriazine and pyrrolidineoxindole, differing in the structure of imidazothiazolotriazine fragment, namely, linear dispiro[imidazo[4,5-e]thiazolo[3,2-b][1,2,4]triazine-6,3'-pyrrolidine- 4',3″-indolines] and angular dispiro[imidazo[4,5-e]thiazolo[2,3-c][1,2,4]triazine-7,3'-pyrrolidine-4',3″-indolines] were proposed. The first method relies on a 1,3-dipolar cycloaddition of azomethine ylides generated in situ from paraformaldehyde and N-alkylglycine derivatives to the corresponding oxindolylidene derivatives of imidazothiazolotriazine. The cycloaddition leads to a mixture of two diastereomers resulted from anti- and syn-approaches of azomethine ylide in approximately a 1:1 ratio, which were separated by column chromatography. Another method consists in rearrangement of linear dispiro[imidazo[4,5-e]thiazolo[3,2-b][1,2,4]triazine-6,3'-pyrrolidine-4',3″-indolines] into hitherto unavailable angular dispiro[imidazo[4,5-e]thiazolo[2,3-c]-[1,2,4]triazine-7,3'-pyrrolidine-4',3″-indolines] upon treatment with KOH. It was found that the anti-diastereomer of linear type underwent rearrangement into the isomeric angular syn-diastereomer, while the rearrangement of the linear syn-diastereomer gave the angular anti-diastereomer.
Collapse
|
18
|
Topanov PA, Maslivets AA, Dmitriev MV, Mashevskaya IV, Shklyaev YV, Maslivets AN. A facile approach to spiro[dihydrofuran-2,3'-oxindoles] via formal [4 + 1] annulation reaction of fused 1 H-pyrrole-2,3-diones with diazooxindoles. Beilstein J Org Chem 2022; 18:1532-1538. [DOI: 10.3762/bjoc.18.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
There has been developed an easy synthetic approach to spiro[dihydrofuran-2,3'-oxindoles] via a highly diastereoselective formal [4 + 1] cycloaddition reaction of [e]-fused 1H-pyrrole-2,3-diones with diazooxindoles. The described novel heterocyclic systems are heteroanalogues of antimicrobial and antibiofilm fungal metabolites. The developed reaction represents the first example of involving 1H-pyrrole-2,3-diones fused at the [e]-side in a [4 + 1] annulation reaction.
Collapse
|
19
|
Recent update on the role of N-methyl glycine as a building block for the construction of N-heterocyclic frameworks. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Ganesh M, Suraj S. Expeditious entry into carbocyclic and heterocyclic spirooxindoles. Org Biomol Chem 2022; 20:5651-5693. [PMID: 35792116 DOI: 10.1039/d2ob00767c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spirocyclic frameworks have attracted synthetic practitioners due to their unique three-dimensional assembly, improved metabolic stability, solubility, and increased molecular complexity with regard to planar architectures. A recent surge in the number of spirocyclic oxindoles inhibiting enzymes, moderating unique protein-protein interactions, modulating receptors and transporters is testament to their prevalence. Against this background, the construction of spirocyclic frameworks containing an oxindole moiety as a torsional switch via stereoselective methods is in great demand. Herein we present a summary of the past three years in the progress of metal, organic molecule, nanostructured particle mediated, and even uncatalyzed versions of the highly diastereo- and enantioselective pathways leading to oxindole spirocycles.
Collapse
Affiliation(s)
- Madhu Ganesh
- Sudhanva Technologies Private Limited, No. 7, Weavers Colony, Basavanapura, Bengaluru, Karnataka 560083, India.
| | - Shammy Suraj
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
21
|
Tian X, Zhang Y, Dong H, Ren W, Wang Y. Asymmetric α-Regioselective [3 + 2] Annulation of Morita-Baylis-Hillman Carbonates: Construction of Three Contiguous Stereocenters with Vicinal Quaternary Carbon Centers. J Org Chem 2022; 87:9593-9606. [PMID: 35833878 DOI: 10.1021/acs.joc.2c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Asymmetric α-regioselective annulation of MBH carbonates with 4-arylmethylisoxazol-5-ones has been developed to afford spirocyclic oxindole derivatives containing three contiguous stereogenic centers and vicinal all-carbon quaternary chiral centers. This reaction exhibits a broad substrate scope and excellent functional group tolerance. Excellent yields with high diastereo- and enantioselectivities were obtained in this efficient organocatalytic reaction.
Collapse
Affiliation(s)
- Xiaochen Tian
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yongxing Zhang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Hao Dong
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Weiwu Ren
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| | - Yang Wang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| |
Collapse
|
22
|
Wang KK, Li YL, Chen R, Wang ZY, Li NB, Zhang LL, Gu S. Substrate-Controlled Regioselectivity Switchable [3 + 2] Annulations To Access Spirooxindole Skeletons. J Org Chem 2022; 87:8158-8169. [PMID: 35675122 DOI: 10.1021/acs.joc.2c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The additive-free [3 + 2] annulation from isatins, amino acids with 2-styrylbenzoxazoles, was described, providing a series of functional and structurally complex 3,3'-pyrrolidinyl-spirooxindole derivatives containing four contiguous and two quaternary stereogenic centers in high yields (up to 95%) and excellent diastereoselectivities (up to >25:1 dr). Interestingly, the reaction exhibits switchable regioselectivity depending on the substrate of amino acids. With proline or thioproline as the substrate, the reaction afforded α-regioselective spirooxindole skeletons. In contrast, when piperidine acid is the substrate, the reaction provided γ-regioselective spirooxindole skeletons.
Collapse
Affiliation(s)
- Kai-Kai Wang
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Yan-Li Li
- Medical College, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Rongxiang Chen
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Zhan-Yong Wang
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Ning-Bo Li
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Lu Lu Zhang
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Shan Gu
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| |
Collapse
|
23
|
Mantellini F, Mari G, De Crescentini L, Favi G, Mancinelli M, Santeusanio S. Easy access to indole‐based bi‐sulfurylate‐heterocyclic scaffolds. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fabio Mantellini
- Università degli Studi di Urbino "Carlo Bo'" Dipartimento di Scienze Biomolecolari Via I Maggetti 24 61029 Urbino ITALY
| | - Giacomo Mari
- University of Urbino Carlo Bo: Universita degli Studi di Urbino Carlo Bo dipartimento di scienze biomolecolari ITALY
| | - Lucia De Crescentini
- University of Urbino Carlo Bo: Universita degli Studi di Urbino Carlo Bo Dipartimento di Scienze Biomolecolari ITALY
| | - Gianfranco Favi
- University of Urbino Carlo Bo: Universita degli Studi di Urbino Carlo Bo Dipartimento di Scienze Biomolecolari ITALY
| | - Michele Mancinelli
- Alma Mater Studiorum Universita di Bologna: Universita degli Studi di Bologna Department of Industrial Chemistry “Toso Montanari” ITALY
| | - Stefania Santeusanio
- University of Urbino Carlo Bo: Universita degli Studi di Urbino Carlo Bo Dipartimento di Scienze Biomolecolari ITALY
| |
Collapse
|
24
|
Barakat A, Haukka M, Soliman SM, Al-Majid AM, Ali M, Islam MS, Karami AM, Ul-Haq Z, Domingo LR. Synthesis and anti-Cancer Activity of a New Hybrid Based Spirooxindole-Pyrrolidine -Thiochromene Scaffolds via [3 + 2] Cycloaddition Reaction: Computational Investigation. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2042334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Assem Barakat
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland
| | - Saied M. Soliman
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - M. Ali
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Zaheer Ul-Haq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Luis R. Domingo
- Department of Organic Chemistry, University of Valencia, Burjassot, Spain Dr. Moliner 50, Valencia
| |
Collapse
|
25
|
Li H, Yu Z, Sun H, Liu B, Wang X, Shao Z, Wang M, Xie W, Yao X, Yao Q, Zhi Y. Efficient Synthesis of 2,3'-Spirobi (Indolin)-2'-Ones and Preliminary Evaluation of Their Damage to Mitochondria in HeLa Cells. Front Pharmacol 2022; 12:821518. [PMID: 35280257 PMCID: PMC8904893 DOI: 10.3389/fphar.2021.821518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
A novel formal (4 + 1) annulation between N-(o-chloromethyl)aryl amides and 3-chlorooxindoles through in situ generated aza-ortho-QMs with 3-chlorooxindoles is reported for the synthesis of a series of 2,3'-spirobi (indolin)-2'-ones in high yields. Under structured illumination microscopy, compound 3a is found to change the mitochondrial morphology and induce mitophagy pathway, which might then trigger mitophagy in cancer cells.
Collapse
Affiliation(s)
- Huajie Li
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenjie Yu
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Haoyi Sun
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Bo Liu
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Xin Wang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Zhe Shao
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Meiling Wang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Weilin Xie
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Xingang Yao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qingqiang Yao
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Ying Zhi
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University, Jinan, China
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
26
|
Lu Z, Jia Y, Chen X, Li P. Organocatalytic Regio- and Enantioselective [3 + 2]-Annulations of Ninhydrin-Derived Morita-Baylis-Hillman Carbonates with 3-Methyleneoxindoles. J Org Chem 2022; 87:3184-3194. [PMID: 35133821 DOI: 10.1021/acs.joc.1c02917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A type of Morita-Baylis-Hillman (MBH) carbonates has been developed from ninhydrin. These MBH carbonates have been successfully employed as 3C-synthons in the organocatalytic asymmetric [3 + 2]-annulations of the isatin-derived electron-deficient olefins, affording structurally diverse spirooxindoles in high yield with excellent stereoselectivity. In particular, the regioselectivity of MBH carbonates was controlled by the reaction partner, 3-methyleneoxindoles with carbonyl groups (R = ArCO), affording β-selective products and 3-methyleneoxindoles with ester groups (R = CO2Me) furnishing γ-selective products. The representative scale-up reactions and transformation of product were examined. The reaction mechanism was expounded by control experiments.
Collapse
Affiliation(s)
- Zhongyue Lu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanwen Jia
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuling Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pengfei Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.,Key Lab of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
27
|
Pareek A, Sivanandan ST, Bhagat S, Namboothiri IN. [3+2]-annulation of oxindolinyl-malononitriles with Morita–Baylis–Hillman acetates of nitroalkenes for the regio- and diastereoselective synthesis of spirocyclopentane-indolinones. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
WANG W, Zou PS, PANG L, LEI R, HUANG ZY, Chen NY, Mo DL, Pan C, SU GF. Synthesis of Spiroindolenine-3,3'-pyrrolo[2,1-b]quinazolinones through Gold(I)-Catalyzed Dearomative Cyclization of N-Alkynyl Quinazolinone-Tethered Indoles. Org Biomol Chem 2022; 20:2069-2074. [DOI: 10.1039/d1ob02492b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A variety of functionalized spiroindolenine-3,3'-pyrrolo[2,1-b]quinazolinones were prepared in good to excellent yields through a gold(I)-catalyzed dearomative cyclization of N-alkynyl quinazolinone-tethered C2-substituted indoles. The reaction features broad substrate scope, good functional...
Collapse
|
29
|
Liu H, Sun S, Ma X, Chen Y, Xu Y. Synthesis of Selenylated Spiro[indole-3,3'-quinoline] Derivatives via Visible-Light-Promoted Isocyanide Insertion. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Wang M, Zhang J, Wang H, Ma B, Dai HX. Construction of Aza-spiro[4,5]indole Scaffolds via Rhodium-Catalyzed Regioselective C(4)—H Activation of Indole ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Sarma MJ, Jindani S, Ganguly B, Pabbaraja S, Mehta G. Tandem Michael- anti-Michael Addition-Mediated Orthogonal Strapping of Diynones: Regioselective Spirocyclopentannulation of Oxindoles and Pyrazolones and DFT Validation. J Org Chem 2021; 87:884-891. [PMID: 34941241 DOI: 10.1021/acs.joc.1c02667] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient protocol involving the transformation of sequentially generated recursive anions from heterocyclic precursors to orthogonally strap diynones through one pot transition-metal-free spirocyclopentannulation has been devised, employing oxindoles and pyrazolones as prototypical platforms. Insights into these regioselective tandem Michael-anti-Michael processes have been gleaned through DFT calculations.
Collapse
Affiliation(s)
- Manas Jyoti Sarma
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India.,Department of Organic Synthesis and Process Chemistry, CSIR─Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Sana Jindani
- Computation and Simulation Unit, Analytical Discipline and Centralized Instrumentation Facility, CSIR─Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| | - Bishwajit Ganguly
- Computation and Simulation Unit, Analytical Discipline and Centralized Instrumentation Facility, CSIR─Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis and Process Chemistry, CSIR─Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
32
|
A strategic approach for synthesis of benzimidazo[2,1-b]thiazolidinone appended dispirooxindole hybrids via [3 + 2] cycloaddition using fluoro-ethanol as solvent. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Mirzaei F, Bayat M, Nasri S. A one-pot synthesis of piperidinium spirooxindoline-pyridineolates and indole-substituted pyridones in aqueous or ethanol medium. Mol Divers 2021; 26:2039-2048. [PMID: 34528212 DOI: 10.1007/s11030-021-10313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022]
Abstract
Piperidinium spirooxindoline-pyridineolate has been prepared via one-pot multicomponent reaction of isatin, malononitrile, cyanoacetohydrazide, and piperidine in water or ethanol medium at room temperature. In addition, the synthesis of two indole-substituted 2-pyridones from indole-3-carbaldehyde, malononitrile, and cyanoacetohydrazide in the presence of piperidine is described.
Collapse
Affiliation(s)
- Faezeh Mirzaei
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Shima Nasri
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|