1
|
Karimi K, Fardoost A, Mhatre N, Rajan J, Boisvert D, Javanmard M. A Thorough Review of Emerging Technologies in Micro- and Nanochannel Fabrication: Limitations, Applications, and Comparison. MICROMACHINES 2024; 15:1274. [PMID: 39459148 PMCID: PMC11509582 DOI: 10.3390/mi15101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
In recent years, the field of micro- and nanochannel fabrication has seen significant advancements driven by the need for precision in biomedical, environmental, and industrial applications. This review provides a comprehensive analysis of emerging fabrication technologies, including photolithography, soft lithography, 3D printing, electron-beam lithography (EBL), wet/dry etching, injection molding, focused ion beam (FIB) milling, laser micromachining, and micro-milling. Each of these methods offers unique advantages in terms of scalability, precision, and cost-effectiveness, enabling the creation of highly customized micro- and nanochannel structures. Challenges related to scalability, resolution, and the high cost of traditional techniques are addressed through innovations such as deep reactive ion etching (DRIE) and multipass micro-milling. This paper also explores the application potential of these technologies in areas such as lab-on-a-chip devices, biomedical diagnostics, and energy-efficient cooling systems. With continued research and technological refinement, these methods are poised to significantly impact the future of microfluidic and nanofluidic systems.
Collapse
Affiliation(s)
| | | | | | | | | | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854, USA; (K.K.); (A.F.); (N.M.); (J.R.); (D.B.)
| |
Collapse
|
2
|
Yi W, Xiao J, Shi Z, Zhang C, Yi L, Lu Y, Wang X. Glass nano/micron pipette-based ion current rectification sensing technology for single cell/ in vivo analysis. Analyst 2024; 149:4981-4996. [PMID: 39311536 DOI: 10.1039/d4an00899e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Glass nano/micron pipettes, owing to their easy preparation, unique confined space at the tip, and modifiable inner surface of the tip, can capture the ion current signal caused by a single entity, making them widely used in the construction of highly sensitive and highly selective electrochemical sensors for single entity analysis. Compared with other solid-state nanopores, their conical nano-tip causes less damage to cells when inserted into them, thereby becoming a powerful tool for the in situ analysis of important substances in cells. However, glass nanopipettes have some shortcomings, such as poor mechanical properties, difficulty in precise preparation (aperture less than 50 nm), and easy blockage during complex real sample detection, limiting their practicability. Therefore, in recent years, researchers have conducted a series of studies on glass micropipettes. Ionic current rectification technology is a novel electrochemical analysis technique. Compared with traditional electrochemical analysis methods, it does not generate redox products during the detection process; therefore, it can not only be used for the determination of non-electrochemically active substances, but also causes less damage to the cell/living body in situ analysis, becoming a powerful analysis technology for the in situ analysis of cells/in vivo in recent years. In this review, we summarize the preparation and functionalization of glass nano/micron pipettes and introduce the sensing mechanisms of two electrochemical sensing platforms constructed using glass nano/micron pipette-based ion current rectification sensing technology as well as their applications in single cell/in vivo analysis, existing problems, and future prospects.
Collapse
Affiliation(s)
- Wei Yi
- School of Biology and Chemistry, Minzu Normal University of Xingyi, Xingyi 562400, P. R. China.
| | - Junxiong Xiao
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang 550025, P. R. China
| | - Zhenyu Shi
- School of Biology and Chemistry, Minzu Normal University of Xingyi, Xingyi 562400, P. R. China.
| | - Changbo Zhang
- School of Biology and Chemistry, Minzu Normal University of Xingyi, Xingyi 562400, P. R. China.
| | - Lanhua Yi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Yebo Lu
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China.
| | - Xingzhu Wang
- The Engineering and Research Center for Integrated New Energy Photovoltaics and Energy Storage Systems of Hunan Province and School of Electrical Engineering, University of South China, Hengyang 421001, P. R. China.
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China.
| |
Collapse
|
3
|
Lanzavecchia G, Sapunova A, Douaki A, Weng S, Momotenko D, Paulo G, Giacomello A, Krahne R, Garoli D. Tailored Fabrication of 3D Nanopores Made of Dielectric Oxides for Multiple Nanoscale Applications. NANO LETTERS 2024; 24:10098-10105. [PMID: 39121066 PMCID: PMC11342934 DOI: 10.1021/acs.nanolett.4c02117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 08/11/2024]
Abstract
Solid-state nanopores are a key platform for single-molecule detection and analysis that allow engineering of their properties by controlling size, shape, and chemical functionalization. However, approaches relying on polymers have limits for what concerns hardness, robustness, durability, and refractive index. Nanopores made of oxides with high dielectric constant would overcome such limits and have the potential to extend the suitability of solid-state nanopores toward optoelectronic technologies. Here, we present a versatile method to fabricate three-dimensional nanopores made of different dielectric oxides with convex, straight, and concave shapes and demonstrate their functionality in a series of technologies and applications such as ionic nanochannels, ionic current rectification, memristors, and DNA sensing. Our experimental data are supported by numerical simulations that showcase the effect of different shapes and oxide materials. This approach toward robust and tunable solid-state nanopores can be extended to other 3D shapes and a variety of dielectrics.
Collapse
Affiliation(s)
- German Lanzavecchia
- Optoelectronics, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
- Dipartimento
di Fisica, Università degli Studi
di Genova, Via Dodecaneso
33, 16146, Genova, Italy
| | - Anastasiia Sapunova
- Optoelectronics, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
- Università
degli Studi di Milano-Bicocca, Piazza dell’Ateneo Nuovo, 1, 20126, Milano, Italy
| | - Ali Douaki
- Optoelectronics, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Shukun Weng
- Optoelectronics, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
- Università
degli Studi di Milano-Bicocca, Piazza dell’Ateneo Nuovo, 1, 20126, Milano, Italy
| | - Dmitry Momotenko
- Institute
of Chemistry, Carl von Ossietzky Universität
Oldenburg, Oldenburg D-26129, Germany
| | - Gonçalo Paulo
- Dipartimento
di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italy
| | - Alberto Giacomello
- Dipartimento
di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italy
| | - Roman Krahne
- Optoelectronics, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Denis Garoli
- Optoelectronics, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
- Dipartimento
di Scienze e Metodi dell’Ingegneria, Università degli Studi di Modena e Reggio Emilia, Via Amendola 2, 43122, Reggio Emilia, Italy
| |
Collapse
|
4
|
Zhang L, Wahab OJ, Jallow AA, O’Dell ZJ, Pungsrisai T, Sridhar S, Vernon KL, Willets KA, Baker LA. Recent Developments in Single-Entity Electrochemistry. Anal Chem 2024; 96:8036-8055. [PMID: 38727715 PMCID: PMC11112546 DOI: 10.1021/acs.analchem.4c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- L. Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - O. J. Wahab
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - A. A. Jallow
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Z. J. O’Dell
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - T. Pungsrisai
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - S. Sridhar
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - K. L. Vernon
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - K. A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - L. A. Baker
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
5
|
Gonzalez Solveyra E, Perez Sirkin YA, Tagliazucchi M, Szleifer I. Orientational Pathways during Protein Translocation through Polymer-Modified Nanopores. ACS NANO 2024; 18:10427-10438. [PMID: 38556978 DOI: 10.1021/acsnano.3c11318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Protein translocation through nanopores holds significant promise for applications in biotechnology, biomolecular analysis, and medicine. However, the interpretation of signals generated by the translocation of the protein remains challenging. In this way, it is crucial to gain a comprehensive understanding on how macromolecules translocate through a nanopore and to identify what are the critical parameters that govern the process. In this study, we investigate the interplay between protein charge regulation, orientation, and nanopore surface modifications using a theoretical framework that allows us to explicitly take into account the acid-base reactions of the titrable amino acids in the proteins and in the polyelectrolytes grafted to the nanopore surface. Our goal is to thoroughly characterize the translocation process of different proteins (GFP, β-lactoglobulin, lysozyme, and RNase) through nanopores modified with weak polyacids. Our calculations show that the charge regulation mechanism exerts a profound effect on the translocation process. The pH-dependent interactions between proteins and charged polymers within the nanopore lead to diverse free energy landscapes with barriers, wells, and flat regions dictating translocation efficiency. Comparison of different proteins allows us to identify the significance of protein isoelectric point, size, and morphology in the translocation behavior. Taking advantage of these insights, we propose pH-responsive nanopores that can load proteins at one pH and release them at another, offering opportunities for controlled protein delivery, separation, and sensing applications.
Collapse
Affiliation(s)
- Estefania Gonzalez Solveyra
- Instituto de Nanosistemas, Universidad Nacional de San Martín-CONICET, San Martín, Buenos Aires B1650, Argentina
| | - Yamila A Perez Sirkin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física y CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE). Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física y CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE). Pabellón 2, Ciudad Universitaria, C1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Qian R, Wu M, Yang Z, Wu Y, Guo W, Zhou Z, Wang X, Li D, Lu Y. Rectifying artificial nanochannels with multiple interconvertible permeability states. Nat Commun 2024; 15:2051. [PMID: 38448408 PMCID: PMC10918189 DOI: 10.1038/s41467-024-46312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Transmembrane channels play a vital role in regulating the permeation process, and have inspired recent development of biomimetic channels. Herein, we report a class of artificial biomimetic nanochannels based on DNAzyme-functionalized glass nanopipettes to realize delicate control of channel permeability, whereby the surface wettability and charge can be tuned by metal ions and DNAzyme-substrates, allowing reversible conversion between different permeability states. We demonstrate that the nanochannels can be reversibly switched between four different permeability states showing distinct permeability to various functional molecules. By embedding the artificial nanochannels into the plasma membrane of single living cells, we achieve selective transport of dye molecules across the cell membrane. Finally, we report on the advanced functions including gene silencing of miR-21 in single cancer cells and selective transport of Ca2+ into single PC-12 cells. In this work, we provide a versatile tool for the design of rectifying artificial nanochannels with on-demand functions.
Collapse
Affiliation(s)
- Ruocan Qian
- Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- Frontiers Science Center for Materiobiology & Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Mansha Wu
- Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology & Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhenglin Yang
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuting Wu
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Weijie Guo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Zerui Zhou
- Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology & Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xiaoyuan Wang
- Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology & Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Dawei Li
- Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology & Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
7
|
Zhang X, Dai Y, Sun J, Shen J, Lin M, Xia F. Solid-State Nanopore/Nanochannel Sensors with Enhanced Selectivity through Pore-in Modification. Anal Chem 2024; 96:2277-2285. [PMID: 38285919 DOI: 10.1021/acs.analchem.3c05228] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Nanopore sensing technology, as an emerging analytical method, has the advantages of simple operation, fast output, and label-free and has been widely used in fields such as protein analysis, gene sequencing, and biomarker detection. Inspired by biological ion channels, scientists have prepared various artificial solid-state nanopores/nanochannels. Biological ion channels have extremely high ion transport selectivity, while solid-state nanopores/nanochannels have poor selectivity. The selectivity of solid-state nanopores and nanochannels can be enhanced by modifying channel charge, varying pore size, incorporating specific chemical functionality, and adjusting operating (or solution) conditions. This Perspective highlights pore-in modification strategies for enhancing the selectivity of solid-state nanopore/nanochannel sensors by summarizing the articles published in the last 10 years. The future development prospects and challenges of pore-in modification in solid-state nanopore and nanochannel sensors are discussed. This Perspective helps readers better understand nanopore sensing technology, especially the importance of detection selectivity. We believe that solid-state nanopore/nanochannel sensors will soon enter our homes after various challenges.
Collapse
Affiliation(s)
- Xiaojin Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yu Dai
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jielin Sun
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|