1
|
Wang T, Joo HJ, Song S, Hu W, Keplinger C, Sitti M. A versatile jellyfish-like robotic platform for effective underwater propulsion and manipulation. SCIENCE ADVANCES 2023; 9:eadg0292. [PMID: 37043565 PMCID: PMC10096580 DOI: 10.1126/sciadv.adg0292] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/13/2023] [Indexed: 05/27/2023]
Abstract
Underwater devices are critical for environmental applications. However, existing prototypes typically use bulky, noisy actuators and limited configurations. Consequently, they struggle to ensure noise-free and gentle interactions with underwater species when realizing practical functions. Therefore, we developed a jellyfish-like robotic platform enabled by a synergy of electrohydraulic actuators and a hybrid structure of rigid and soft components. Our 16-cm-diameter noise-free prototype could control the fluid flow to propel while manipulating objects to be kept beneath its body without physical contact, thereby enabling safer interactions. Its against-gravity speed was up to 6.1 cm/s, substantially quicker than other examples in literature, while only requiring a low input power of around 100 mW. Moreover, using the platform, we demonstrated contact-based object manipulation, fluidic mixing, shape adaptation, steering, wireless swimming, and cooperation of two to three robots. This study introduces a versatile jellyfish-like robotic platform with a wide range of functions for diverse applications.
Collapse
Affiliation(s)
- Tianlu Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Hyeong-Joon Joo
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - Shanyuan Song
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- Bioinspired Autonomous Miniature Robots Group, Stuttgart 70569, Germany
| | - Wenqi Hu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- Bioinspired Autonomous Miniature Robots Group, Stuttgart 70569, Germany
| | - Christoph Keplinger
- Robotic Materials Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich 8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul 34450, Turkey
| |
Collapse
|