1
|
Yao X, Song Z, Yao X, Guan Y, Hamada N, Zhang J, Huo Z, Zhang L, Singh CV, Sun X. Synergistic Ni-W Dimer Sites Induced Stable Compressive Strain for Boosting the Performance of Pt as Electrocatalyst for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2024; 63:e202318872. [PMID: 38503685 DOI: 10.1002/anie.202318872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Alloying Pt catalysts with transition metal elements is an effective pathway to enhance the performance of oxygen reduction reaction (ORR), but often accompanied with severe metal dissolution issue, resulting in poor stability of alloy catalysts. Here, instead of forming traditional alloy structure, we modify Pt surface with a novel Ni-W dimer structure by the atomic layer deposition (ALD) technique. The obtained NiW@PtC catalyst exhibits superior ORR performance both in liquid half-cell and practical fuel cell compared with initial Pt/C. It is discovered that strong synergistic Ni-W dimer structure arising from short atomic distance induced a stable compressive strain on the Pt surface, thus boosting Pt catalytic performance. This surface modification by synergistic dimer sites offers an effective strategy in tailoring Pt with excellent activity and stability, which provides a significant perspective in boosting the performance of commercial Pt catalyst modified with polymetallic atom sites.
Collapse
Affiliation(s)
- Xiaozhang Yao
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6 A 5B9, Canada
| | - Zhongxin Song
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Xue Yao
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada
| | - Yi Guan
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6 A 5B9, Canada
| | - Natalie Hamada
- Canadian Centre for Electron Microscopy, Hamilton, ON, L8S 4M1, Canada
| | - Jingyan Zhang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6 A 5B9, Canada
| | - Ziwei Huo
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6 A 5B9, Canada
| | - Lei Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, China
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON, N6 A 5B9, Canada
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 3150200, China
| |
Collapse
|
2
|
Mufundirwa A, Sakurai Y, Arao M, Matsumoto M, Imai H, Iwamoto H. Contrast variation method applied to structural evaluation of catalysts by X-ray small-angle scattering. Sci Rep 2024; 14:2263. [PMID: 38278843 PMCID: PMC10817912 DOI: 10.1038/s41598-024-52671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/22/2024] [Indexed: 01/28/2024] Open
Abstract
In the process of developing carbon-supported metal catalysts, determining the catalyst particle-size distribution is an essential step, because this parameter is directly related to the catalytic activities. The particle-size distribution is most effectively determined by small-angle X-ray scattering (SAXS). When metal catalysts are supported by high-performance mesoporous carbon materials, however, their mesopores may lead to erroneous particle-size estimation if the sizes of the catalysts and mesopores are comparable. Here we propose a novel approach to particle-size determination by introducing contrast variation-SAXS (CV-SAXS). In CV-SAXS, a multi-component sample is immersed in an inert solvent with a density equal to that of one of the components, thereby rendering that particular component invisible to X-rays. We used a mixture of tetrabromoethane and dimethyl sulfoxide as a contrast-matching solvent for carbon. As a test sample, we prepared a mixture of a small amount of platinum (Pt) catalyst and a bulk of mesoporous carbon, and subjected it to SAXS measurement in the absence and presence of the solvent. In the absence of the solvent, the estimated Pt particle size was affected by the mesopores, but in the presence of the solvent, the Pt particle size was correctly estimated in spite of the low Pt content. The results demonstrate that the CV-SAXS technique is useful for correctly determining the particle-size distribution for low-Pt-content catalysts, for which demands are increasing to reduce the use of expensive Pt.
Collapse
Affiliation(s)
- Albert Mufundirwa
- Research Project Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo-Cho, Sayo-Gun, Hyogo, 679-5198, Japan
| | - Yoshiharu Sakurai
- Research Project Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo-Cho, Sayo-Gun, Hyogo, 679-5198, Japan
| | - Masazumi Arao
- Fuel Cell Cutting-Edge Research Center Technology Research Association, 3147, Shimomukouyama-Cho, Kofu, Yamanashi, 400-1507, Japan
| | - Masashi Matsumoto
- Fuel Cell Cutting-Edge Research Center Technology Research Association, 3147, Shimomukouyama-Cho, Kofu, Yamanashi, 400-1507, Japan
| | - Hideto Imai
- Fuel Cell Cutting-Edge Research Center Technology Research Association, 3147, Shimomukouyama-Cho, Kofu, Yamanashi, 400-1507, Japan
| | - Hiroyuki Iwamoto
- Research Project Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo-Cho, Sayo-Gun, Hyogo, 679-5198, Japan.
| |
Collapse
|
3
|
Chen Y, Zhao X, Yan H, Sun L, Chen S, Zhang S, Zhang J. Manipulating Pt-skin of porous network Pt-Cu alloy nanospheres toward efficient oxygen reduction. J Colloid Interface Sci 2023; 652:1006-1015. [PMID: 37639923 DOI: 10.1016/j.jcis.2023.08.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/12/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Designing Pt-skin on the catalyst surface is critical to developing efficient and stable electrocatalysts toward oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. In this paper, an acidic reductant is proposed to synchronously manipulate in-situ growth of Pt-skin on the surface of alloyed Pt-Cu nanospheres (PtCuNSs) by a facile one-pot synthesis in an aqueous solution. Ascorbic acid can create a Pt-skin of three atomic layers to make the typical PtCu-alloy@Pt-skin core/shell nanostructure rather than the uniform alloys generated by using alkaline reductants. Surfactant as soft-template can make the alloyed PtCuNSs with a three-dimensional porous network structure. Multiple characterizations of XRD, XPS and XAFS are used to confirm Pt-alloying with Cu and formation of core/shell structure of such a catalyst. This PtCuNSs/C exhibits a half-wave potential of 0.913 V (vs. RHE), with mass activity and specific activity about 3.5 and 6.4 times higher than those of Pt/C, respectively. Fuel cell tests verify the excellent activity of PtCuNSs/C catalyst with a maximum power density of about 1.2 W cm-2. Moreover, this catalyst shows excellent stability, achieving a long-term operation of 40,000 cycles. Furthermore, theoretical calculations reveal the enhancement effect of characteristic PtCu-alloy@Pt-skin nanostructure on both catalytic ORR activity and stability.
Collapse
Affiliation(s)
- Yizhe Chen
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiao Zhao
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| | - Huangli Yan
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan 430072, Hubei, China
| | - Liangyu Sun
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| | - Shengli Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan 430072, Hubei, China
| | - Shiming Zhang
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Jiujun Zhang
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
4
|
Wang Z, Chen S, Wu W, Chen R, Zhu Y, Jiang H, Yu L, Cheng N. Tailored Lattice Compressive Strain of Pt-Skins by the L1 2 -Pt 3 M Intermetallic Core for Highly Efficient Oxygen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301310. [PMID: 37196181 DOI: 10.1002/adma.202301310] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/07/2023] [Indexed: 05/19/2023]
Abstract
The sluggish kinetics of oxygen reduction reaction (ORR) and unsatisfactory durability of Pt-based catalysts are severely hindering the commercialization of proton-exchange-membrane fuel cells (PEMFCs). In this work, the lattice compressive strain of Pt-skins imposed by Pt-based intermetallic cores is tailored for highly effective ORR through the confinement effect of the activated nitrogen-doped porous carbon (a-NPC). The modulated pores of a-NPC not only promote Pt-based intermetallics with ultrasmall size (average size of <4 nm), but also efficiently stabilizes intermetallic nanoparticles and sufficient exposure of active sites during the ORR process. The optimized catalyst (L12 -Pt3 Co@ML-Pt/NPC10 ) achieves excellent mass activity (1.72 A mgPt -1 ) and specific activity (3.49 mA cmPt -2 ), which are 11- and 15-fold that of commercial Pt/C, respectively. Besides, owing to the confinement effect of a-NPC and protection of Pt-skins, L12 -Pt3 Co@ML-Pt/NPC10 retains 98.1% mass activity after 30 000 cycles, and even 95% for 100 000 cycles, while Pt/C retains only 51.2% for 30 000 cycles. Rationalized by density functional theory, compared with other metals (Cr, Mn, Fe, and Zn), L12 -Pt3 Co closer to the top of "volcano" induces a more suitable compressive strain and electronic structure on Pt-skin, leading to an optimal oxygen adsorption energy and a remarkable ORR performance.
Collapse
Affiliation(s)
- Zichen Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Suhao Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Wei Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Runzhe Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yu Zhu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Haoran Jiang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Liyue Yu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Niancai Cheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
- Key Laboratory of Fuel Cell Technology of Guangdong Province, Guangzhou, 510641, P. R. China
| |
Collapse
|
5
|
Cai J, Chen J, Chen Y, Zhang J, Zhang S. Engineering carbon semi-tubes supported platinum catalyst for efficient oxygen reduction electrocatalysis. iScience 2023; 26:106730. [PMID: 37216112 PMCID: PMC10193227 DOI: 10.1016/j.isci.2023.106730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Innovation of catalyst structure is extremely important to develop the high-performance electrocatalysts for oxygen-reduction reaction (ORR). Herein, nitrogen-doped carbon semi-tube (N-CST) is used as a functional support for stabilizing the microwave-reduced Pt nanoparticles with an average size of ∼2.8 nm to synthesize the semi-tubular Pt/N-CST catalyst. The contribution of interfacial Pt-N bond between N-CST support and Pt nanoparticles with electrons transfer from N-CST support to Pt nanoparticles is found by electron paramagnetic resonance (EPR) and X-ray absorption fine structure (XAFS) spectroscopy. This bridged Pt-N coordination can simultaneously help ORR electrocatalysis and promote electrochemical stability. As a result, the innovative Pt/N-CST catalyst exhibits excellent catalytic performance, realizing ORR activity and electrochemical stability superior to the commercial Pt/C catalyst. Furthermore, density functional theoretical (DFT) calculations suggest that the interfacial Pt-N-C site with unique affinity of O∗ + OH∗ can provide new active routes for the enhanced electrocatalytic ORR capacity.
Collapse
Affiliation(s)
- Jialin Cai
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| | - Junxiang Chen
- State Key Laboratory of Structural Chemistry, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yizhe Chen
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiujun Zhang
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| | - Shiming Zhang
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
The effect of a gas atmosphere on the formation of colloidal platinum nanoparticles in liquid phase synthesis. Colloid Polym Sci 2023. [DOI: 10.1007/s00396-023-05077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|