1
|
Si T, Cho H, Kim HY, Oh K. ortho-Naphthoquinone-Catalyzed Aerobic Hydrodeamination of Aryl Amines via in Situ De-diazotization of Aryl Diazonium Species. Org Lett 2022; 24:8531-8535. [DOI: 10.1021/acs.orglett.2c03523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tengda Si
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul06974, Republic of Korea
| | - Hana Cho
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul06974, Republic of Korea
| |
Collapse
|
2
|
Chen J, Xie X, Liu J, Yu Z, Su W. Revisiting aromatic diazotization and aryl diazonium salts in continuous flow: highlighted research during 2001–2021. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00001f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aryl diazonium salts play an important role in chemical transformations; however their explosive nature limits their applications in batch.
Collapse
Affiliation(s)
- Jianli Chen
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Xiaoxuan Xie
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Jiming Liu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Zhiqun Yu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| |
Collapse
|
3
|
Shi Z, Wang X, Yin D, Li W, Liu D, Zhou X. High-Flux Continuous-Flow Synthesis of C.I. Pigment Yellow 12 from Clear Alkaline Solutions of the Coupling Component. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhiping Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xudong Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Defei Yin
- The First Scientific Research Institute of Wuxi, Wuxi 214035, China
| | - Wei Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Dongzhi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xueqin Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
4
|
Hu C. Reactor design and selection for effective continuous manufacturing of pharmaceuticals. J Flow Chem 2021; 11:243-263. [PMID: 34026279 PMCID: PMC8130218 DOI: 10.1007/s41981-021-00164-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022]
Abstract
Pharmaceutical production remains one of the last industries that predominantly uses batch processes, which are inefficient and can cause drug shortages due to the long lead times or quality defects. Consequently, pharmaceutical companies are transitioning away from outdated batch lines, in large part motivated by the many advantages of continuous manufacturing (e.g., low cost, quality assurance, shortened lead time). As chemical reactions are fundamental to any drug production process, the selection of reactor and its design are critical to enhanced performance such as improved selectivity and yield. In this article, relevant theories, and models, as well as their required input data are summarized to assist the reader in these tasks, focusing on continuous reactions. Selected examples that describe the application of plug flow reactors (PFRs) and continuous-stirred tank reactors (CSTRs)-in-series within the pharmaceutical industry are provided. Process analytical technologies (PATs), which are important tools that provide real-time in-line continuous monitoring of reactions, are recommended to be considered during the reactor design process (e.g., port design for the PAT probe). Finally, other important points, such as density change caused by thermal expansion or solid precipitation, clogging/fouling, and scaling-up, are discussed. Graphical abstract
Collapse
Affiliation(s)
- Chuntian Hu
- CONTINUUS Pharmaceuticals, Woburn, MA 01801 USA
| |
Collapse
|
5
|
Mo F, Qiu D, Zhang L, Wang J. Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chem Rev 2021; 121:5741-5829. [DOI: 10.1021/acs.chemrev.0c01030] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Di Qiu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Lei Zhang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Sun M, Li J, Liang C, Shan C, Shen X, Cheng R, Ma Y, Ye J. Practical and rapid construction of 2-pyridyl ketone library in continuous flow. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00120-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Liu J, Wang D, Xu Q, Yu H, Zhou J, Yu Z, Su W. Continuous-flow double diazotization for the synthesis of m-difluorobenzene via Balz-Schiemann reaction. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00115-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Yu Z, Xu Q, Liu L, Wu Z, Huang J, Lin J, Su W. Dinitration of o-toluic acid in continuous-flow: process optimization and kinetic study. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00078-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Xu F, Chen JL, Jiang ZJ, Cheng PF, Yu ZQ, Su WK. Selective hydrogenation of nitroaromatics to N-arylhydroxylamines in a micropacked bed reactor with passivated catalyst. RSC Adv 2020; 10:28585-28594. [PMID: 35520060 PMCID: PMC9055875 DOI: 10.1039/d0ra05715k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
In this contribution, a protocol was established for the selective catalytic hydrogenation of nitroarenes to the corresponding N-arylhydroxylamines. The reduction of 1-(4-chlorophenyl)-3-((2-nitrobenzyl)oxy)-1H-pyrazole, an intermediate in the synthesis of the antifungal reagent pyraclostrobin that includes carbon–chlorine bonds, benzyl groups, carbon–carbon double bonds and other structures that are easily reduced, was chosen as the model reaction for catalyst evaluation and condition optimization. Extensive passivant evaluation showed that RANEY®-nickel treated with ammonia/DMSO (1 : 10, v/v) afforded the optimal result, especially with a particle size of 400–500 mesh. To combine the modified catalyst with continuous-flow reaction technology, the reaction was conducted at room temperature, rendering the desired product with a conversion rate of 99.4% and a selectivity of 99.8%. The regeneration of catalytic activity was also studied, and an in-column strategy was developed by pumping the passivate liquid overnight. Finally, the generality of the method was explored, and 7 substrates were developed, most of which showed a good conversion rate and selectivity, indicating that the method has a certain degree of generality. High selective hydrogenation of nitroaromatics to n-arylhydroxylamines in a micropacked bed reactor with passivated catalyst.![]()
Collapse
Affiliation(s)
- Feng Xu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- People's Republic of China
| | - Jian-Li Chen
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- People's Republic of China
| | - Zhi-Jiang Jiang
- School of Biological and Chemical Engineering
- Ningbo Tech University
- Ningbo
- People's Republic of China
| | - Peng-Fei Cheng
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- People's Republic of China
| | - Zhi-Qun Yu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- People's Republic of China
| | - Wei-Ke Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- People's Republic of China
| |
Collapse
|
10
|
Xie X, Xie S, Yao H, Ye X, Yu Z, Su W. Green and catalyst-free synthesis of deoxyarbutin in continuous-flow. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00084d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Highly efficient catalyst-free continuous-flow reaction and recycle process for the synthesis of deoxyarbutin.
Collapse
Affiliation(s)
- Xiaoxuan Xie
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Shitian Xie
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Hongmiao Yao
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Xin Ye
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Zhiqun Yu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| |
Collapse
|