Yang Z, Hu Q, Wang L, Cao J, Song J, Song L, Zhang Y. Recent advances in the synthesis and application of graphene aerogel and silica aerogel for environment and energy storage: A review.
JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025;
377:124668. [PMID:
39986145 DOI:
10.1016/j.jenvman.2025.124668]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Aerogel materials have gained considerable attention in recent years due to their promising applications in environmental and energy storage fields, owing to their exceptional properties, including high porosity, ultra-low thermal conductivity, low density, and high specific surface area. This review begins by examining novel synthesis techniques, including sol-gel processing, chemical crosslinking, and templating, that enhance both the microstructural and functional properties of aerogels. Next, we explore the applications of graphene and silica aerogels in environmental and energy conservation technologies. Graphene aerogels, in particular, demonstrate significant potential in water purification by effectively removing antibiotics, offering a new approach to water treatment. The combination of silica aerogels with phase change materials, along with their use in supercapacitors, demonstrates their potential for energy conservation. Additionally, we discuss the synergistic effects of silica and graphene aerogels, which further broaden their applications. Finally, the paper concludes by summarizing the potential of graphene and silica aerogels as functional materials for environmental applications and outlining the challenges and future directions for their development and industrial use.
Collapse