1
|
Molinares M, Wolpert N, Gollahon L, Xu C. Effect of micropillar density on morphology and migration of low and high metastatic potential breast cancer cells. Colloids Surf B Biointerfaces 2024; 245:114214. [PMID: 39260275 DOI: 10.1016/j.colsurfb.2024.114214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/07/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Study of cell migration in cancer is crucial to the comprehension of the processes and factors that govern tumor spread. Cancer cells migrate invading tissues, causing alterations in cell adhesion, cytoskeleton, and signaling pathways. Little is known about the physical attributes of cancer cells that change when interacting with microenvironments. In this work, the local topography of the ECM has been mimicked through micropillar array substrates. MDA-MB-231 and MCF-7 breast cancer cells, exhibiting high and low metastatic potential, respectively, were analyzed. Differences in morphology and migration of the cells were investigated by examining the cell spreading area, circularity, aspect ratio, migration speed, and migration path. This work encountered that none of the studied cell lines have preferential orientation migrating on uniform patterns. In contrast, cell migration on graded patterns shows preferential orientation along the longitudinal direction from sparser to denser zones which is significantly influenced by substrate stiffness and indicates that both cell lines can sense the spacing gradient and respond to this topographical cue. The migration speed of the breast cancer cell lines significantly decreases from the sparse to medium to dense zones, registering higher values for the MDA-MB-231.
Collapse
Affiliation(s)
- Marielena Molinares
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Nicholas Wolpert
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Changxue Xu
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
2
|
Sharifi Panah S, Großmann R, Lepro V, Beta C. Cargo Size Limits and Forces of Cell-Driven Microtransport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304666. [PMID: 37933711 DOI: 10.1002/smll.202304666] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Indexed: 11/08/2023]
Abstract
The integration of motile cells into biohybrid microrobots offers unique properties such as sensitive responses to external stimuli, resilience, and intrinsic energy supply. Here, biohybrid cell-cargo systems that are driven by amoeboid Dictyostelium discoideum cells are studied and how the cargo speed and the resulting viscous drag force scales with increasing radius of the spherical cargo particle are explored. Using a simplified geometrical model of the cell-cargo interaction, the findings toward larger cargo sizes, which are not accessible with the experimental setup, are extrapolated and a maximal cargo size is predicted beyond which active cell-driven movements will stall. The active forces exerted by the cells to move a cargo show mechanoresponsive adaptation and increase dramatically when challenged by an external pulling force, a mechanism that may become relevant when navigating cargo through complex heterogeneous environments.
Collapse
Affiliation(s)
- Setareh Sharifi Panah
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Straße 24/25, 14476, Potsdam, Germany
| | - Robert Großmann
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Straße 24/25, 14476, Potsdam, Germany
| | - Valentino Lepro
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Straße 24/25, 14476, Potsdam, Germany
| | - Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Straße 24/25, 14476, Potsdam, Germany
| |
Collapse
|
3
|
Atsu PM, Mowen C, Thompson GL. Enhanced Cell Viability and Migration of Primary Bovine Annular Fibrosus Fibroblast-like Cells Induced by Microsecond Pulsed Electric Field Exposure. ACS OMEGA 2023; 8:36815-36822. [PMID: 37841191 PMCID: PMC10568721 DOI: 10.1021/acsomega.3c03518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023]
Abstract
This study is the first to report the enhancement of cell migration and proliferation induced by in vitro microsecond pulsed electric field (μsPEF) exposure of primary bovine annulus fibrosus (AF) fibroblast-like cells. AF primary cells isolated from fresh bovine intervertebral disks (IVDs) are exposed to 10 and 100 μsPEFs with different numbers of pulses and applied electric field strengths. The results indicate that 10 μs-duration pulses induce reversible electroporation, while 100 μs pulses induce irreversible electroporation of the cells. Additionally, μsPEF exposure increased AF cell proliferation up to 150% while increasing the average migration speed by 0.08 μm/min over 24 h. The findings suggest that the effects of PEF exposure on cells are multifactorial-depending on the duration, intensity, and number of pulses used in the stimulation. This highlights the importance of optimizing the μsPEF parameters for specific cell types and applications. For instance, if the goal is to induce cell death for cancer treatment, then high numbers of pulses can be used to maximize the lethal effects. On the other hand, if the goal is to enhance cell proliferation, a combination of the number of pulses and the applied electric field strength can be tuned to achieve the desired outcome. The information gleaned from this study can be applied in the future to in vitro cell culture expansion and tissue regeneration.
Collapse
Affiliation(s)
- Prince M. Atsu
- Department
of Chemical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Connor Mowen
- Department
of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Gary L. Thompson
- Department
of Chemical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
4
|
Shakiba D, Genin GM, Zustiak SP. Mechanobiology of cancer cell responsiveness to chemotherapy and immunotherapy: Mechanistic insights and biomaterial platforms. Adv Drug Deliv Rev 2023; 196:114771. [PMID: 36889646 PMCID: PMC10133187 DOI: 10.1016/j.addr.2023.114771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/17/2022] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
Mechanical forces are central to how cancer treatments such as chemotherapeutics and immunotherapies interact with cells and tissues. At the simplest level, electrostatic forces underlie the binding events that are critical to therapeutic function. However, a growing body of literature points to mechanical factors that also affect whether a drug or an immune cell can reach a target, and to interactions between a cell and its environment affecting therapeutic efficacy. These factors affect cell processes ranging from cytoskeletal and extracellular matrix remodeling to transduction of signals by the nucleus to metastasis of cells. This review presents and critiques the state of the art of our understanding of how mechanobiology impacts drug and immunotherapy resistance and responsiveness, and of the in vitro systems that have been of value in the discovery of these effects.
Collapse
Affiliation(s)
- Delaram Shakiba
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Guy M Genin
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA.
| | - Silviya P Zustiak
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO, USA; Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
5
|
Zhang H, Ma Y, Wang Y, Niu L, Zou R, Zhang M, Liu H, Genin GM, Li A, Xu F. Rational Design of Soft-Hard Interfaces through Bioinspired Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204498. [PMID: 36228093 DOI: 10.1002/smll.202204498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Soft-hard tissue interfaces in nature present a diversity of hierarchical transitions in composition and structure to address the challenge of stress concentrations that would otherwise arise at their interface. The translation of these into engineered materials holds promise for improved function of biomedical interfaces. Here, soft-hard tissue interfaces found in the body in health and disease, and the application of the diverse, functionally graded, and hierarchical structures that they present to bioinspired engineering materials are reviewed. A range of such bioinspired engineering materials and associated manufacturing technologies that are on the horizon in interfacial tissue engineering, hydrogel bioadhesion at the interfaces, and healthcare and medical devices are described.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yijie Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Min Zhang
- State Key Laboratory of Military Stomatology, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
- NSF Science and Technology Center for Engineering MechanoBiology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
6
|
Xu HQ, Liu JC, Zhang ZY, Xu CX. A review on cell damage, viability, and functionality during 3D bioprinting. Mil Med Res 2022; 9:70. [PMID: 36522661 PMCID: PMC9756521 DOI: 10.1186/s40779-022-00429-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional (3D) bioprinting fabricates 3D functional tissues/organs by accurately depositing the bioink composed of the biological materials and living cells. Even though 3D bioprinting techniques have experienced significant advancement over the past decades, it remains challenging for 3D bioprinting to artificially fabricate functional tissues/organs with high post-printing cell viability and functionality since cells endure various types of stress during the bioprinting process. Generally, cell viability which is affected by several factors including the stress and the environmental factors, such as pH and temperature, is mainly determined by the magnitude and duration of the stress imposed on the cells with poorer cell viability under a higher stress and a longer duration condition. The maintenance of high cell viability especially for those vulnerable cells, such as stem cells which are more sensitive to multiple stresses, is a key initial step to ensure the functionality of the artificial tissues/organs. In addition, maintaining the pluripotency of the cells such as proliferation and differentiation abilities is also essential for the 3D-bioprinted tissues/organs to be similar to native tissues/organs. This review discusses various pathways triggering cell damage and the major factors affecting cell viability during different bioprinting processes, summarizes the studies on cell viabilities and functionalities in different bioprinting processes, and presents several potential approaches to protect cells from injuries to ensure high cell viability and functionality.
Collapse
Affiliation(s)
- He-Qi Xu
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jia-Chen Liu
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Zheng-Yi Zhang
- School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chang-Xue Xu
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
7
|
Kang H, Xiong Y, Ma L, Yang T, Xu X. Recent advances in micro-/nanostructure array integrated microfluidic devices for efficient separation of circulating tumor cells. RSC Adv 2022; 12:34892-34903. [PMID: 36540264 PMCID: PMC9724214 DOI: 10.1039/d2ra06339e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/18/2022] [Indexed: 09/06/2023] Open
Abstract
Circulating tumor cells (CTCs) released from the primary tumor to peripheral blood are promising targets for liquid biopsies. Their biological information is vital for early cancer detection, efficacy assessment, and prognostic monitoring. Despite the tremendous clinical applications of CTCs, development of effective separation techniques are still demanding. Traditional separation methods usually use batch processing for enrichment, which inevitably destroy cell integrity and affect the complete information acquisition. Considering the rarity and heterogeneity of CTCs, it is urgent to develop effective separation methods. Microfluidic chips with precise fluid control at the micron level are promising devices for CTC separation. Their further combination with micro-/nanostructure arrays adds more biomolecule binding sites and exhibit unique fluid barrier effect, which significantly improve the CTC capture efficiency, purity, and sensitivity. This review summarized the recent advances in micro-/nanostructure array integrated microfluidic devices for CTC separation, including microrods, nanowires, and 3D micro-/nanostructures. The mechanisms by which these structures contribute to improved capture efficiency are discussed. Two major categories of separation methods, based on the physical and biological properties of CTCs, are discussed separately. Physical separation includes the design and preparation of micro-/nanostructure arrays, while chemical separation additionally involves the selection and modification of specific capture probes. These emerging technologies are expected to become powerful tools for disease diagnosis in the future.
Collapse
Affiliation(s)
- Hanyue Kang
- School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Yuting Xiong
- School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University Hangzhou 310058 China
| | - Tongqing Yang
- School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| | - Xiaobin Xu
- School of Materials Science and Engineering, Tongji University Shanghai 201804 China
| |
Collapse
|
8
|
Joshi R, Han SB, Cho WK, Kim DH. The role of cellular traction forces in deciphering nuclear mechanics. Biomater Res 2022; 26:43. [PMID: 36076274 PMCID: PMC9461125 DOI: 10.1186/s40824-022-00289-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
Cellular forces exerted on the extracellular matrix (ECM) during adhesion and migration under physiological and pathological conditions regulate not only the overall cell morphology but also nuclear deformation. Nuclear deformation can alter gene expression, integrity of the nuclear envelope, nucleus-cytoskeletal connection, chromatin architecture, and, in some cases, DNA damage responses. Although nuclear deformation is caused by the transfer of forces from the ECM to the nucleus, the role of intracellular organelles in force transfer remains unclear and a challenging area of study. To elucidate nuclear mechanics, various factors such as appropriate biomaterial properties, processing route, cellular force measurement technique, and micromanipulation of nuclear forces must be understood. In the initial phase of this review, we focused on various engineered biomaterials (natural and synthetic extracellular matrices) and their manufacturing routes along with the properties required to mimic the tumor microenvironment. Furthermore, we discussed the principle of tools used to measure the cellular traction force generated during cell adhesion and migration, followed by recently developed techniques to gauge nuclear mechanics. In the last phase of this review, we outlined the principle of traction force microscopy (TFM), challenges in the remodeling of traction forces, microbead displacement tracking algorithm, data transformation from bead movement, and extension of 2-dimensional TFM to multiscale TFM.
Collapse
Affiliation(s)
- Rakesh Joshi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Seong-Beom Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| | - Won-Ki Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea.
- Department of Integrative Energy Engineering, College of Engineering, Korea University, Seoul, South Korea.
| |
Collapse
|
9
|
Carthew J, Taylor JBJ, Garcia-Cruz MR, Kiaie N, Voelcker NH, Cadarso VJ, Frith JE. The Bumpy Road to Stem Cell Therapies: Rational Design of Surface Topographies to Dictate Stem Cell Mechanotransduction and Fate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23066-23101. [PMID: 35192344 DOI: 10.1021/acsami.1c22109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells sense and respond to a variety of physical cues from their surrounding microenvironment, and these are interpreted through mechanotransductive processes to inform their behavior. These mechanisms have particular relevance to stem cells, where control of stem cell proliferation, potency, and differentiation is key to their successful application in regenerative medicine. It is increasingly recognized that surface micro- and nanotopographies influence stem cell behavior and may represent a powerful tool with which to direct the morphology and fate of stem cells. Current progress toward this goal has been driven by combined advances in fabrication technologies and cell biology. Here, the capacity to generate precisely defined micro- and nanoscale topographies has facilitated the studies that provide knowledge of the mechanotransducive processes that govern the cellular response as well as knowledge of the specific features that can drive cells toward a defined differentiation outcome. However, the path forward is not fully defined, and the "bumpy road" that lays ahead must be crossed before the full potential of these approaches can be fully exploited. This review focuses on the challenges and opportunities in applying micro- and nanotopographies to dictate stem cell fate for regenerative medicine. Here, key techniques used to produce topographic features are reviewed, such as photolithography, block copolymer lithography, electron beam lithography, nanoimprint lithography, soft lithography, scanning probe lithography, colloidal lithography, electrospinning, and surface roughening, alongside their advantages and disadvantages. The biological impacts of surface topographies are then discussed, including the current understanding of the mechanotransductive mechanisms by which these cues are interpreted by the cells, as well as the specific effects of surface topographies on cell differentiation and fate. Finally, considerations in translating these technologies and their future prospects are evaluated.
Collapse
Affiliation(s)
- James Carthew
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jason B J Taylor
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maria R Garcia-Cruz
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nasim Kiaie
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nicolas H Voelcker
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Victor J Cadarso
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
10
|
Liu X, Lu X, Wang Z, Yang X, Dai G, Yin J, Huang Y. Effect of bore fluid composition on poly(lactic-co-glycolic acid) hollow fiber membranes fabricated by dry-jet wet spinning. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Xu K, Liu X, Li X, Yin J, Wei P, Qian J, Sun J. Effect of Electrical and Electromechanical Stimulation on PC12 Cell Proliferation and Axon Outgrowth. Front Bioeng Biotechnol 2021; 9:757906. [PMID: 34746110 PMCID: PMC8566739 DOI: 10.3389/fbioe.2021.757906] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Peripheral nerve injuries have become a common clinical disease with poor prognosis and complicated treatments. The development of tissue engineering pointed a promising direction to produce nerve conduits for nerve regeneration. Electrical and mechanical stimulations have been incorporated with tissue engineering, since such external stimulations could promote nerve cell proliferation, migration and differentiation. However, the combination of electrical and mechanical stimulations (electromechanical stimulation) and its effects on neuron proliferation and axon outgrowth have been rarely investigated. Herein, silver nanowires (AgNWs) embedded polydimethylsiloxane (PDMS) electrodes were developed to study the effects of electromechanical stimulation on rat pheochromocytoma cells (PC12 cells) behaviors. AgNWs/PDMS electrodes demonstrated good biocompatibility and established a stable electric field during mechanical stretching. PC12 cells showed enhanced proliferation rate and axon outgrowth under electrical stimulation alone, and the cell number significantly increased with higher electrical stimulation intensity. The involvement of mechanical stretching in electrical stimulation reduced the cell proliferation rate and axon outgrowth, compared with the case of electrical stimulation alone. Interestingly, the cellular axons outgrowth was found to depend on the stretching direction, where the axons prefer to align perpendicularly to the stretch direction. These results suggested that AgNWs/PDMS electrodes provide an in vitro platform to investigate the effects of electromechanical stimulation on nerve cell behaviors and can be potentially used for nerve regeneration in the future.
Collapse
Affiliation(s)
- Kailei Xu
- Central Laboratory, Ningbo First Hospital, Ningbo, China
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Xixia Liu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- School of Mechanical Engineering, Guizhou University, Guiyang, China
| | - Xiaokeng Li
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Peng Wei
- Department of Hand and Foot Microsurgery, Ningbo First Hospital, Ningbo, China
| | - Jin Qian
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Jie Sun
- Central Laboratory, Ningbo First Hospital, Ningbo, China
- Department of Neurosurgery, Ningbo First Hospital, Ningbo, China
| |
Collapse
|
12
|
Modeling adult skeletal stem cell response to laser-machined topographies through deep learning. Tissue Cell 2020; 67:101442. [DOI: 10.1016/j.tice.2020.101442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023]
|
13
|
Physical understanding of axonal growth patterns on grooved substrates: groove ridge crossing versus longitudinal alignment. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00089-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Yu S, Wu H, Xie M, Lin H, Ma J. Precise robust motion control of cell puncture mechanism driven by piezoelectric actuators with fractional-order nonsingular terminal sliding mode control. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00083-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Wang Y, Wang Y, Mei D, Yu Z, Xue D. Standing surface acoustic wave-assisted fabrication of patterned microstructures for enhancing cell migration. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00071-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|