1
|
Li X, Ding W, Wang S, Yang L, Yu Q, Xiao C, Chen G, Zhang L, Guan S, Sun D. Three-Dimensional Sulfated Bacterial Cellulose/Gelatin Composite Scaffolds for Culturing Hepatocytes. CYBORG AND BIONIC SYSTEMS 2023; 4:0021. [PMID: 37223548 PMCID: PMC10202184 DOI: 10.34133/cbsystems.0021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/18/2023] [Indexed: 05/25/2023] Open
Abstract
The liver is the hub of human metabolism and involves many diseases. To better work on the mechanism and treatment of liver diseases, it is of particular interest to design 3-dimensional scaffolds suitable for culturing hepatocytes in vitro to simulate their metabolic and regenerative abilities. In this study, sulfated bacterial cellulose (SBC) was prepared as the building block of cell scaffolds, motivated by the anionic nature and 3-dimensional structure of hepatic extracellular matrix, and its reaction condition for sulfate esterification was optimized by changing the reaction time. The analysis and study of the microscopic morphology, structure, and cytocompatibility of SBCs showed that they possess good biocompatibility and meet the requirements for tissue engineering. Next, SBC was mixed with gelatin for composite scaffolds (SBC/Gel) for culturing hepatocytes by homogenization and freeze-drying methods, whose physical properties such as pore size, porosity, and compression properties were compared with gelatin (Gel) scaffolds as the control group, and the cytological activity and hemocompatibility of the composite scaffolds were investigated. The results showed that the SBC/Gel composite has better porosity and compression properties, as well as good cytocompatibility and hemocompatibility, and could be applied to 3-dimensional culture of hepatocytes for drug screening or liver tissue engineering.
Collapse
Affiliation(s)
- Xinmeng Li
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Weixiao Ding
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Shujun Wang
- Department of Blood Transfusion, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Luyu Yang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Qingqing Yu
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Changji Xiao
- Obstetrics and Gynaecology Department, Peking University First Hospital, Peking University, Beijing 100034, China
| | - Guangbo Chen
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Lei Zhang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| |
Collapse
|
2
|
Głowacz K, Skorupska S, Grabowska-Jadach I, Ciosek-Skibińska P. Excitation–emission matrix fluorescence spectroscopy for cell viability testing in UV-treated cell culture. RSC Adv 2022; 12:7652-7660. [PMID: 35424724 PMCID: PMC8982211 DOI: 10.1039/d1ra09021f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/25/2022] [Indexed: 02/02/2023] Open
Abstract
Monitoring of cells viability is essential in a number of biomedical applications, including cell-based sensors, cell-based microsystems, and cell-based assays. The use of spectroscopic techniques for such purposes is especially advantageous since they are non-invasive, label-free, and non-destructive. However, such an approach must include chemometric analysis of the data to assess the information on cells viability. In the presented article we demonstrate, that excitation–emission matrix (EEM) fluorescence spectroscopy can be applied for reliable determination of cells viability due to the high correlation of EEM fluorescence data with the MTT test data. A375 cells (malignant melanoma) were exposed to UV radiation as a physical stress factor, resulting in a decrease of viability up to ca. 20%, confirmed by the standard MTT test. They were also characterized by means of EEM fluorescence spectroscopy coupled with unfolded partial least squares (UPLS) regression. Statistical evaluation revealed high accordance of the two methods of viability testing in terms of accuracy, precision, and correlation. The presented results are very promising for the development of spectroscopic soft sensors that can be applied for drug screening, biocompatibility testing, tissue engineering, and pharmacodynamic studies. Excitation-emission matrix fluorescence spectroscopy can be applied for label-free and non-destructive determination of cells viability, which is promising methodology for drug screening, biocompatibility testing, or pharmacodynamic studies.![]()
Collapse
Affiliation(s)
- Klaudia Głowacz
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Sandra Skorupska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Ilona Grabowska-Jadach
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Patrycja Ciosek-Skibińska
- Chair of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
3
|
Ma L, Wu Y, Li Y, Aazmi A, Zhou H, Zhang B, Yang H. Current Advances on 3D-Bioprinted Liver Tissue Models. Adv Healthc Mater 2020; 9:e2001517. [PMID: 33073522 DOI: 10.1002/adhm.202001517] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/27/2020] [Indexed: 12/16/2022]
Abstract
The liver, the largest gland in the human body, plays a key role in metabolism, bile production, detoxification, and water and electrolyte regulation. The toxins or drugs that the gastrointestinal system absorbs reach the liver first before entering the bloodstream. Liver disease is one of the leading causes of death worldwide. Therefore, an in vitro liver tissue model that reproduces the main functions of the liver can be a reliable platform for investigating liver diseases and developing new drugs. In addition, the limitations in traditional, planar monolayer cell cultures and animal tests for evaluating the toxicity and efficacy of drug candidates can be overcome. Currently, the newly emerging 3D bioprinting technologies have the ability to construct in vitro liver tissue models both in static scaffolds and dynamic liver-on-chip manners. This review mainly focuses on the construction and applications of liver tissue models based on 3D bioprinting. Special attention is given to 3D bioprinting strategies and bioinks for constructing liver tissue models including the cell sources and hydrogel selection. In addition, the main advantages and limitations and the major challenges and future perspectives are discussed, paving the way for the next generation of in vitro liver tissue models.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou 310027 P. R. China
- School of Mechanical Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Yutong Wu
- State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou 310027 P. R. China
- School of Mechanical Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Yuting Li
- State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou 310027 P. R. China
- School of Mechanical Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou 310027 P. R. China
- School of Mechanical Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Hongzhao Zhou
- State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou 310027 P. R. China
- School of Mechanical Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Bin Zhang
- State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou 310027 P. R. China
- School of Mechanical Engineering Zhejiang University Hangzhou 310027 P. R. China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems Zhejiang University Hangzhou 310027 P. R. China
- School of Mechanical Engineering Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
4
|
Yu S, Wu H, Xie M, Lin H, Ma J. Precise robust motion control of cell puncture mechanism driven by piezoelectric actuators with fractional-order nonsingular terminal sliding mode control. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00083-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Hassan Q, Ahmadi S, Kerman K. Recent Advances in Monitoring Cell Behavior Using Cell-Based Impedance Spectroscopy. MICROMACHINES 2020; 11:E590. [PMID: 32545753 PMCID: PMC7345285 DOI: 10.3390/mi11060590] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022]
Abstract
Cell-based impedance spectroscopy (CBI) is a powerful tool that uses the principles of electrochemical impedance spectroscopy (EIS) by measuring changes in electrical impedance relative to a voltage applied to a cell layer. CBI provides a promising platform for the detection of several properties of cells including the adhesion, motility, proliferation, viability and metabolism of a cell culture. This review gives a brief overview of the theory, instrumentation, and detection principles of CBI. The recent applications of the technique are given in detail for research into cancer, neurodegenerative diseases, toxicology as well as its application to 2D and 3D in vitro cell cultures. CBI has been established as a biophysical marker to provide quantitative cellular information, which can readily be adapted for single-cell analysis to complement the existing biomarkers for clinical research on disease progression.
Collapse
Affiliation(s)
| | | | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (Q.H.); (S.A.)
| |
Collapse
|