1
|
Lyu S, Liu Q, Yuen HY, Xie H, Yang Y, Yeung KWK, Tang CY, Wang S, Liu Y, Li B, He Y, Zhao X. A differential-targeting core-shell microneedle patch with coordinated and prolonged release of mangiferin and MSC-derived exosomes for scarless skin regeneration. MATERIALS HORIZONS 2024; 11:2667-2684. [PMID: 38669042 DOI: 10.1039/d3mh01910a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Microneedles for skin regeneration are conventionally restricted by uncontrollable multi-drug release, limited types of drugs, and poor wound adhesion. Here, a novel core-shell microneedle patch is developed for scarless skin repair, where the shell is composed of hydrophilic gelatin methacryloyl (GelMA) loaded with mangiferin, an anti-inflammatory small molecule, and the core is composed of hydrophobic poly (lactide-co-propylene glycol-co-lactide) dimethacrylates (PGLADMA) loaded with bioactive macromolecule and human mesenchymal stromal cell (hMSC)-derived exosomes. This material choice provides several benefits: the GelMA shell provides a swelling interface for tissue interlocking and rapid release of mangiferin at an early wound healing stage for anti-inflammation, whereas the PGLADMA core offers long-term encapsulation and release of exosomes (30% release in 3 weeks), promoting sustained angiogenesis and anti-inflammation. Our results demonstrate that the core-shell microneedle possesses anti-inflammatory properties and can induce angiogenesis both in vitro in terms of macrophage polarization and tube formation of human umbilical vein endothelial cells (HUVECs), and in vivo in terms of anti-inflammation, re-epithelization, and vessel formation. Importantly, we also observe reduced scar formation in vivo. Altogether, the degradation dynamics of our hydrophilic/hydrophobic materials enable the design of a core-shell microneedle for differential and prolonged release, promoting scarless skin regeneration, with potential for other therapies of long-term exosome release.
Collapse
Affiliation(s)
- Shang Lyu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China.
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Qi Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China.
| | - Ho-Yin Yuen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China.
| | - Huizhi Xie
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Yuhe Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Kelvin Wai-Kwok Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Chak-Yin Tang
- Department of Industrial & Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
| | - Shuqi Wang
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yaxiong Liu
- Jihua Laboratory, Foshan, Guangdong 528000, China
| | - Bin Li
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China.
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
2
|
Chen X, Liu Z, Ma R, Lu J, Zhang L. Electrospun nanofibers applications in caries lesions: prevention, treatment and regeneration. J Mater Chem B 2024; 12:1429-1445. [PMID: 38251708 DOI: 10.1039/d3tb02616g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Dental caries is a multifactorial disease primarily mediated by biofilm formation, resulting in a net loss of mineral content and degradation of organic matrix in dental hard tissues. Caries lesions of varying depths can result in demineralization of the superficial enamel, the formation of deep cavities extending into the dentin, and even pulp infection. Electrospun nanofibers (ESNs) exhibit an expansive specific surface area and a porous structure, closely mimicking the unique architecture of the natural extracellular matrix (ECM). This unique topography caters to the transport of small molecules and facilitates localized therapeutic drug delivery, offering great potential in regulating cell behavior, and thereby attracting interest in ESNs' applications in the treatment of caries lesions and the reconditioning of the affected dental tissues. Thus, this review aims to consolidate the recent developments in ESNs' applications for caries lesions. This review begins with an introduction to the electrospinning technique and provides a comprehensive overview of the biological properties and modification methods of ESNs, followed by an introduction outlining the basic pathological processes, classification and treatment requirements of caries lesions. Finally, the review offers a detailed examination of the research progress on the ESNs' application in caries lesions and concludes by addressing the limitations.
Collapse
Affiliation(s)
- Xiangshu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Zhenqi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Rui Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Junzhuo Lu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu, 610041, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, No.14, Section 3, Renmin Road South, Chengdu, 610041, China
| |
Collapse
|
3
|
Aazmi A, Zhang D, Mazzaglia C, Yu M, Wang Z, Yang H, Huang YYS, Ma L. Biofabrication methods for reconstructing extracellular matrix mimetics. Bioact Mater 2024; 31:475-496. [PMID: 37719085 PMCID: PMC10500422 DOI: 10.1016/j.bioactmat.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023] Open
Abstract
In the human body, almost all cells interact with extracellular matrices (ECMs), which have tissue and organ-specific compositions and architectures. These ECMs not only function as cellular scaffolds, providing structural support, but also play a crucial role in dynamically regulating various cellular functions. This comprehensive review delves into the examination of biofabrication strategies used to develop bioactive materials that accurately mimic one or more biophysical and biochemical properties of ECMs. We discuss the potential integration of these ECM-mimics into a range of physiological and pathological in vitro models, enhancing our understanding of cellular behavior and tissue organization. Lastly, we propose future research directions for ECM-mimics in the context of tissue engineering and organ-on-a-chip applications, offering potential advancements in therapeutic approaches and improved patient outcomes.
Collapse
Affiliation(s)
- Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Duo Zhang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Corrado Mazzaglia
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
4
|
Ballikaya E, Çelebi-Saltik B. Approaches to vital pulp therapies. AUST ENDOD J 2023; 49:735-749. [PMID: 37515353 DOI: 10.1111/aej.12772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Tooth decay, which leads to pulpal inflammation due to the pulp's response to bacterial components and byproducts is the most common infectious disease. The main goals of clinical management are to eliminate sources of infection, to facilitate healing by regulating inflammation indental tissue, and to replace lost tissues. A variety of novel approaches from tissue engineering based on stem cells, bioactive molecules, and extracellular matrix-like scaffold structures to therapeutic applications, or a combination of all these are present in the literature. Shortcomings of existing conventional materials for pulp capping and the novel approches aiming to preserve pulp vitality highligted the need for developing new targeted dental materials. This review looks at the novel approches for vital pulp treatments after briefly addresing the conventional vital pulp treatment as well as the regenerative and self defense capabilities of the pulp. A narrative review focusing on the current and future approaches for pulp preservation was performed after surveying the relevant papers on vital pulp therapies including pulp capping, pulpotomy, and potential approaches for facilitating dentin-pulp complex regeneration in PubMed, Medline, and Scopus databases.
Collapse
Affiliation(s)
- Elif Ballikaya
- Department of Oral and Dental Health Research, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
- Department of Pediatric Dentistry, Hacettepe University Faculty of Dentistry, Ankara, Turkey
| | - Betül Çelebi-Saltik
- Department of Oral and Dental Health Research, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Ren Y, Ma C, Yu Y, Yang D, Zhang L, Wang H, Sun L. Poly(l-lactic acid)-based double-layer composite scaffold for bone tissue repair. Regen Biomater 2023; 11:rbad093. [PMID: 38173766 PMCID: PMC10761204 DOI: 10.1093/rb/rbad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/12/2023] [Accepted: 09/28/2023] [Indexed: 01/05/2024] Open
Abstract
Bone defect is a serious threat to human health. Osteopractic total flavone (OTF) extracted from Rhizoma Drynariae has the effects of promoting bone formation. Panax notoginseng saponin (PNS) has the function of activating blood circulation and removing blood stasis. Therefore, combining OTF and PNS with poly(l-lactic acid) (PLLA) to prepare scaffolds containing PNS in the outer layer and OTF in the inner layer is a feasible solution to rapidly remove blood stasis and continue to promote bone formation. In addition, degradation rate of the scaffold can affect the release time of two drugs. Adding Mg particles in outer layer can control the degradation rate of the scaffold and the drug release. Therefore, a double-layer drug-loaded PLLA scaffold containing OTF in the inner layer, PNS and Mg particles in the outer layer was prepared and characterized to verify its feasibility. The experimental results showed that the scaffold can realize the rapid release of PNS and the continuous release of OTF. With the increase of Mg content, the drug release rate became faster. Animal experiments showed that the scaffold containing 5% Mg particles could effectively promote the formation of new bone in the bone defect of male New Zealand white rabbits, and the area and density of new bone formed were much better than those in the control group. These results demonstrated that the double-layer drug-loaded scaffold had good ability to promote bone repair.
Collapse
Affiliation(s)
- Yixing Ren
- Department of Joint Surgery, The Fourth Central Hospital of Baoding City, Baoding 072350, China
| | - Chunyang Ma
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yao Yu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Dandan Yang
- Department of Science and Education, The Fourth Central Hospital of Baoding City, Baoding 072350, China
| | - Lingling Zhang
- Department of Nursing, The Fourth Central Hospital of Baoding City, Baoding 072350, China
| | - Huitao Wang
- Department of General Surgery, The Fourth Central Hospital of Baoding City, Baoding 072350, China
| | - Lei Sun
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100083, China
| |
Collapse
|
6
|
Zhang Q, Yang Y, Suo D, Zhao S, Cheung JCW, Leung PHM, Zhao X. A Biomimetic Adhesive and Robust Janus Patch with Anti-Oxidative, Anti-Inflammatory, and Anti-Bacterial Activities for Tendon Repair. ACS NANO 2023; 17:16798-16816. [PMID: 37622841 DOI: 10.1021/acsnano.3c03556] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Early stage oxidative stress, inflammatory response, and infection after tendon surgery are highly associated with the subsequent peritendinous adhesion formation, which may diminish the quality and function of the repaired tendon. Although various anti-inflammatory and/or antibacterial grafts have been proposed to turn the scale, most of them suffer from the uncertainty of drug-induced adverse effects, low mechanical strength, and tissue adhesiveness. Here, inspired by the tendon anatomy and pathophysiology of adhesion development, an adhesive and robust dual-layer Janus patch is developed, whose inner layer facing the operated tendon is a multifunctional electrospun hydrogel patch (MEHP), encircled further by a poly-l-lactic acid (PLLA) fibrous outer layer facing the surrounding tissue. Specifically, MEHP is prepared by gelatin methacryloyl (GelMA) and zinc oxide (ZnO) nanoparticles, which are co-electrospun first and then treated by tannic acid (TA). The inner MEHP exhibits superior mechanical performance, adhesion strength, and outstanding antioxidation, anti-inflammation, and antibacterial properties, and it can adhere to the injury site offering a favorable microenvironment for tendon regeneration. Meanwhile, the outer PLLA acts as a physical barrier that prevents extrinsic cells and tissues from invading the defect site, reducing peritendinous adhesion formation. This work presents a proof-of-concept of a drug-free graft with anisotropic adhesive and biological functions to concert the healing phases of injured tendon by alleviating incipient inflammation and oxidative damage but supporting tissue regeneration and reducing tendon adhesion in the later phase of repair and remodeling. It is envisioned that this Janus patch could offer a promising strategy for safe and efficient tendon therapy.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Yuhe Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Di Suo
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Shuai Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - James Chung-Wai Cheung
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| |
Collapse
|
7
|
Li Z, Du T, Gao C, Tang L, Chen K, Liu J, Yang J, Zhao X, Niu X, Ruan C. In-situ mineralized homogeneous collagen-based scaffolds for potential guided bone regeneration. Biofabrication 2022; 14. [PMID: 36041425 DOI: 10.1088/1758-5090/ac8dc7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/30/2022] [Indexed: 11/11/2022]
Abstract
For guided bone regeneration (GBR) in clinical orthopedics, the importance of a suitable scaffold which can provide the space needed for bone regeneration and simultaneously promotes the new bone formation cannot be overemphasized. Due to its excellent biocompatibility, mechanical strength, and similarity in structure and composition to natural bone, the mineralized collagen-based scaffolds have been increasingly considered as promising GBR scaffolds. Herein, we propose a novel method to fabricate an in-situ mineralized homogeneous collagen-based scaffold (IMHCS) with excellent osteogenic capability for GBR by electrospinning the collagen solution in combination with essential mineral ions. The IMHCS exhibited homogeneous distribution of apatite crystals in electrospun fibers, which helped to achieve a significantly higher tensile strength than the pure collagen scaffold (CS) and the scaffold with directly added nano-hydroxyapatite particles (HAS). Furthermore, the IMHCS had significantly better cell compatibility, cell migration ratio, and osteogenic differentiation property than the HAS and CS. Therefore, the IMHCS not only retains traditional function of inhibiting fibroblast invasion, but also possesses excellent osteogenic differentiation property, indicating a robust alternative for GBR applications.
Collapse
Affiliation(s)
- Zhengwei Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100083, CHINA
| | - Tianming Du
- Department of Biomedical Engineering, Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Faculty of Environment and Life, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100022, CHINA
| | - Chongjian Gao
- Center for Human Tissue and Organs Degeneration, Institute Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, No. 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, CHINA
| | - Lan Tang
- Center for Human Tissue and Organs Degeneration, Institute Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, No. 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, CHINA
| | - Kinon Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, PR China., Beijing, 100083, CHINA
| | - Juan Liu
- Center for Human Tissue and Organs Degeneration, Institute Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, No. 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, CHINA
| | - Jirong Yang
- Center for Human Tissue and Organs Degeneration, Institute Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, No. 1068 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, CHINA
| | - Xiaoli Zhao
- Center for Human Tissue and Organs Degeneration, Institute Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, No. 1068 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, CHINA
| | - Xufeng Niu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, PR China., Beijing, 100083, CHINA
| | - Changshun Ruan
- Center for Human Tissue and Organs Degeneration, Institute Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, No. 1068 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong, 518055, CHINA
| |
Collapse
|