1
|
Ji J, Wu S, Su H, An S, Ruan J, Zeng D. Research progress of PVA conductive hydrogel-based wearable biosensors in sweat detection. Chem Eng Sci 2024; 300:120620. [DOI: 10.1016/j.ces.2024.120620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Qian Y, Wang H, Qu Z, Li Q, Wang D, Yang X, Qin H, Wei H, Zhang F, Qing G. Synergistic color-changing and conductive photonic cellulose nanocrystal patches for sweat sensing with biodegradability and biocompatibility. MATERIALS HORIZONS 2024. [PMID: 39485285 DOI: 10.1039/d4mh01148a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Given the ongoing requirements for versatility, sustainability, and biocompatibility in wearable applications, cellulose nanocrystal (CNC) photonic materials emerge as excellent candidates for multi-responsive wearable devices due to their tunable structural color, strong electron-donating capacity, and renewable nature. Nonetheless, most CNC-derived materials struggle to incorporate color-changing and electrical sensing into one system since the self-assembly of CNCs is incompatible with conventional conductive mediums. Here we report the design of a conductive photonic patch through constructing a CNC/polyvinyl alcohol hydrogel modulated by phytic acid (PA). The introduction of PA significantly enhances the hydrogen bonding interaction, resulting in the composite film with impressive flexibility (1.4 MJ m-3) and progressive color changes from blue, green, yellow, to ultimately red upon sweat wetting. Interestingly, this system simultaneously demonstrates selective and sensitive electrical sensing functions, as well as satisfactory biocompatibility, biodegradability, and breathability. Importantly, a proof-of-concept demonstration of a skin-adhesive patch is presented, where the optical and electrical dual-signal sweat sensing allows for intuitive visual and multimode electric localization of sweat accumulation during physical exercises. This innovative interactive strategy for monitoring human metabolites could offer a fresh perspective into the design of wearable health-sensing devices, while greatly expanding the applications of CNC-based photonic materials in medicine-related fields.
Collapse
Affiliation(s)
- Yi Qian
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Hao Wang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Zhen Qu
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Qiongya Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xindi Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin 300000, P. R. China
| | - Haijie Wei
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
| | - Fusheng Zhang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Guangyan Qing
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
3
|
Tan SCL, Ning Y, Yu Y, Goh WP, Jiang C, Liu L, Zheng XT, Yang L. Stretchable Sweat Lactate Sensor with Dual-Signal Read-Outs. Chem Asian J 2024; 19:e202400496. [PMID: 39037569 DOI: 10.1002/asia.202400496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/07/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Innovations in wearable sweat sensors hold great promise to provide deeper insights into molecular level health information non-invasively. Lactate, a key metabolite present in sweat, holds immense significance in assessing physiological conditions and performance in sports physiology and health sensing. This paper presents the development and characterization of stretchable electrodes with ultrahigh active surface area of 648 % for lactate sensing. The as-printed stretchable electrodes were functionalized with an electron transfer layer comprising Toluidine Blue O and multi-walled carbon nanotubes (MWCNTs), and an enzymatic layer consisting of lactate dehydrogenase with β-Nicotinamide adenine dinucleotide as the cofactor for lactate selectivity. This sensor achieves a dual-signal read-out in which both electrochemical and fluorescence signals were obtained during lactate detection, demonstrating promising sensor performance in terms of sensitivity and reliability. We demonstrate the robustness of the dual-signal sensor under simulated conditions of physical deformation and shifted excitation. Under these compromised conditions, the performance of the stretchable electrodes remained largely unaffected, showcasing their potential for robust and adaptable sensing platforms in wearable health monitoring applications.
Collapse
Affiliation(s)
- Sherwin Chong Li Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Yuetong Ning
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Republic of Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Wei Peng Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Changyun Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Liyuan Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Department of Biological Science, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Republic of Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Republic of Singapore
| |
Collapse
|
4
|
Xu K, Cai Z, Luo H, Lu Y, Ding C, Yang G, Wang L, Kuang C, Liu J, Yang H. Toward Integrated Multifunctional Laser-Induced Graphene-Based Skin-Like Flexible Sensor Systems. ACS NANO 2024; 18:26435-26476. [PMID: 39288275 DOI: 10.1021/acsnano.4c09062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The burgeoning demands for health care and human-machine interfaces call for the next generation of multifunctional integrated sensor systems with facile fabrication processes and reliable performances. Laser-induced graphene (LIG) with highly tunable physical and chemical characteristics plays vital roles in developing versatile skin-like flexible or stretchable sensor systems. This Progress Report presents an in-depth overview of the latest advances in LIG-based techniques in the applications of flexible sensors. First, the merits of the LIG technique are highlighted especially as the building blocks for flexible sensors, followed by the description of various fabrication methods of LIG and its variants. Then, the focus is moved to diverse LIG-based flexible sensors, including physical sensors, chemical sensors, and electrophysiological sensors. Mechanisms and advantages of LIG in these scenarios are described in detail. Furthermore, various representative paradigms of integrated LIG-based sensor systems are presented to show the capabilities of LIG technique for multipurpose applications. The signal cross-talk issues are discussed with possible strategies. The LIG technology with versatile functionalities coupled with other fabrication strategies will enable high-performance integrated sensor systems for next-generation skin electronics.
Collapse
Affiliation(s)
- Kaichen Xu
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zimo Cai
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Huayu Luo
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuyao Lu
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chenliang Ding
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Geng Yang
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Lili Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Cuifang Kuang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jingquan Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Huayong Yang
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
5
|
Vo TS, Hoang T, Vo TTBC, Jeon B, Nguyen VH, Kim K. Recent Trends of Bioanalytical Sensors with Smart Health Monitoring Systems: From Materials to Applications. Adv Healthc Mater 2024; 13:e2303923. [PMID: 38573175 PMCID: PMC11468404 DOI: 10.1002/adhm.202303923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/09/2024] [Indexed: 04/05/2024]
Abstract
Smart biosensors attract significant interest due to real-time monitoring of user health status, where bioanalytical electronic devices designed to detect various activities and biomarkers in the human body have potential applications in physical sign monitoring and health care. Bioelectronics can be well integrated by output signals with wireless communication modules for transferring data to portable devices used as smart biosensors in performing real-time diagnosis and analysis. In this review, the scientific keys of biosensing devices and the current trends in the field of smart biosensors, (functional materials, technological approaches, sensing mechanisms, main roles, potential applications and challenges in health monitoring) will be summarized. Recent advances in the design and manufacturing of bioanalytical sensors with smarter capabilities and enhanced reliability indicate a forthcoming expansion of these smart devices from laboratory to clinical analysis. Therefore, a general description of functional materials and technological approaches used in bioelectronics will be presented after the sections of scientific keys to bioanalytical sensors. A careful introduction to the established systems of smart monitoring and prediction analysis using bioelectronics, regarding the integration of machine-learning-based basic algorithms, will be discussed. Afterward, applications and challenges in development using these smart bioelectronics in biological, clinical, and medical diagnostics will also be analyzed. Finally, the review will conclude with outlooks of smart biosensing devices assisted by machine learning algorithms, wireless communications, or smartphone-based systems on current trends and challenges for future works in wearable health monitoring.
Collapse
Affiliation(s)
- Thi Sinh Vo
- School of Mechanical EngineeringSungkyunkwan UniversitySuwon16419South Korea
| | - Trung Hoang
- Department of BiophysicsSungkyunkwan UniversitySuwon16419South Korea
- Institute of Quantum BiophysicsSungkyunkwan UniversitySuwon16419South Korea
| | - Tran Thi Bich Chau Vo
- Faculty of Industrial ManagementCollege of EngineeringCan Tho UniversityCan Tho900000Vietnam
| | - Byounghyun Jeon
- School of Mechanical EngineeringSungkyunkwan UniversitySuwon16419South Korea
| | - Vu Hoang Nguyen
- Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVIC3800Australia
| | - Kyunghoon Kim
- School of Mechanical EngineeringSungkyunkwan UniversitySuwon16419South Korea
| |
Collapse
|
6
|
Zhang S, He Z, Zhao W, Liu C, Zhou S, Ibrahim OO, Wang C, Wang Q. Innovative Material-Based Wearable Non-Invasive Electrochemical Sweat Sensors towards Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:857. [PMID: 38786813 PMCID: PMC11124380 DOI: 10.3390/nano14100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Sweat is an accessible biofluid that provides useful physiological information about the body's biomolecular state and systemic health. Wearable sensors possess various advantageous features, such as lightweight design, wireless connectivity, and compatibility with human skin, that make them suitable for continuous monitoring. Wearable electrochemical sweat sensors can diagnose diseases and monitor health conditions by detecting biomedical signal changes in sweat. This paper discusses the state-of-the-art research in the field of wearable sweat sensors and the materials used in their construction. It covers biomarkers present in sweat, sensing modalities, techniques for sweat collection, and ways to power these sensors. Innovative materials are categorized into three subcategories: sweat collection, sweat detection, and self-powering. These include substrates for sensor fabrication, analyte detection electrodes, absorbent patches, microfluidic devices, and self-powered devices. This paper concludes by forecasting future research trends and prospects in material-based wearable non-invasive sweat sensors.
Collapse
Affiliation(s)
- Sheng Zhang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (S.Z.); (Z.H.); (W.Z.); (C.L.); (S.Z.); (O.O.I.)
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Zhaotao He
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (S.Z.); (Z.H.); (W.Z.); (C.L.); (S.Z.); (O.O.I.)
- Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
| | - Wenjie Zhao
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (S.Z.); (Z.H.); (W.Z.); (C.L.); (S.Z.); (O.O.I.)
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chen Liu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (S.Z.); (Z.H.); (W.Z.); (C.L.); (S.Z.); (O.O.I.)
- Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Shulan Zhou
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (S.Z.); (Z.H.); (W.Z.); (C.L.); (S.Z.); (O.O.I.)
- Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
| | - Oresegun Olakunle Ibrahim
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (S.Z.); (Z.H.); (W.Z.); (C.L.); (S.Z.); (O.O.I.)
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chunge Wang
- School of Mechanical and Energy Engineering, Ningbo Tech University, Ningbo 315100, China;
| | - Qianqian Wang
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; (S.Z.); (Z.H.); (W.Z.); (C.L.); (S.Z.); (O.O.I.)
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| |
Collapse
|
7
|
Wang C, Zhang Y, Liu Y, Zeng X, Jin C, Huo D, Hou J, Hou C. A wearable flexible electrochemical biosensor with CuNi-MOF@rGO modification for simultaneous detection of uric acid and dopamine in sweat. Anal Chim Acta 2024; 1299:342441. [PMID: 38499429 DOI: 10.1016/j.aca.2024.342441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND In health assessment and personalized medical services, accurate detection of biological markers such as dopamine (DA) and uric acid (UA) in sweat is crucial for providing valuable physiological information. However, there are challenges in detecting sweat biomarkers due to their low concentrations, variations in sweat yield among individuals, and the need for efficient sweat collection. RESULTS We synthesized CuNi-MOF@rGO as a high-activity electrocatalyst and investigated its feasibility and electrochemical mechanism for simultaneously detecting low-concentration biomarkers UA and DA. Interaction between the non-coordinating carboxylate group and the sample produces effective separation signals for DA and UA. The wearable biomimetic biosensor has a wide linear range of 1-500 μM, with a detection limit of 9.41 μM and sensitivity of 0.019 μA μM-1 cm-2 for DA, and 10-1000 μM, with a detection limit of 9.09 μM and sensitivity of 0.026 μA μM-1 cm-2 for UA. Thus, our sensor performs excellently in detecting low-concentration biomarkers. To improve sweat collection, we designed a microfluidic-controlled device with hydrophilic modification in the microchannel. Experimental results show optimal ink flow at 2% concentration. Overall, we developed an innovative and highly active electrocatalyst, successfully enabling simultaneous detection of low-concentration biomarkers UA and DA. SIGNIFICANCE This study provides a strategy for sweat analysis and health monitoring. Moreover, the sensor also showed good performance in detecting real sweat samples. This study has shown great potential in future advances in sweat analysis and health monitoring.
Collapse
Affiliation(s)
- Cuncun Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Yong Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Yiyi Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Xin Zeng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Changpeng Jin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
| | - Jingzhou Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Engineering and Technology Research Center of Intelligent Rehabilitation and Eldercare, Chongqing City Management College, Chongqing, 401331, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
8
|
Xu B, Chang H, Yang G, Xu Z, Li J, Gu Z, Li J. An integrated wearable sticker based on extended-gate AlGaN/GaN high electron mobility transistors for real-time cortisol detection in human sweat. Analyst 2024; 149:958-967. [PMID: 38197472 DOI: 10.1039/d3an02115g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Cortisol hormone imbalances can be detected through non-invasive sweat monitoring using field-effect transistor (FET) biosensors, which provide rapid and sensitive detection. However, challenges like skin compatibility and integration with sweat collection have hindered FET biosensors as wearable sensing platforms. In this study, we present an integrated wearable sticker for real-time cortisol detection based on an extended-gate AlGaN/GaN high electron mobility transistor (HEMT) combined with a soft bottom substrate and flexible channel for sweat collection. The developed devices exhibit excellent linearity (R2 = 0.990) and a high sensitivity of 1.245 μA dec-1 for cortisol sensing from 1 nM to 100 μM in high-ionic-strength solution, with successful cortisol detection demonstrated using authentic human sweat samples. Additionally, the chip's microminiature design effectively reduces bending impact during the wearable process of traditional soft binding sweat sensors. The extendedgate structure design of the HEMT chip enhances both width-to-length ratio and active sensing area, resulting in an exceptionally low detection limit of 100 fM. Futhermore, due to GaN material's inherent stability, this device exhibits long-term stability with sustained performance within a certain attenuation range even after 60 days. These stickers possess small, lightweight, and portable features that enable real-time cortisol detection within 5 minutes through direct sweat collection. The application of this technology holds great potential in the field of personal health management, facilitating users to conveniently monitor their mental and physical conditions.
Collapse
Affiliation(s)
- Boxuan Xu
- The College of Materials Science and Engineering, Shanghai University, Shanghai, 200072, People's Republic of China.
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
| | - Hui Chang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Guo Yang
- School of Electrical and Mechanical Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Zhan Xu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Jun Li
- The College of Materials Science and Engineering, Shanghai University, Shanghai, 200072, People's Republic of China.
| | - Zhiqi Gu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
| | - Jiadong Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125, People's Republic of China.
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| |
Collapse
|
9
|
Yao Z, Xiong Y, Kang H, Xu X, Guo J, Li W, Xu X. Tunable Periodic Nanopillar Array for MAPbI 3 Perovskite Photodetectors with Improved Light Absorption. ACS OMEGA 2024; 9:2606-2614. [PMID: 38250387 PMCID: PMC10795138 DOI: 10.1021/acsomega.3c07390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024]
Abstract
In the field of optoelectronic applications, the vigorous development of organic-inorganic hybrid perovskite materials, such as methylammonium lead triiodide (MAPbI3), has spurred continuous research on methods to enhance the photodetection performance. Periodic nanoarrays can effectively improve the light absorption of perovskite thin films. However, there are still challenges in fabricating tunable periodic patterned and large-area perovskite nanoarrays. In this study, we present a cost-effective and facile approach utilizing nanosphere lithography and dry etching techniques to create a large-area Si nanopillar array, which is employed for patterning MAPbI3 thin films. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) results reveal that the introduction of nanopillar structures did not have a significant adverse effect on the crystallinity of the MAPbI3 thin film. Light absorption tests and optical simulations indicate that the nanopillar array enhances the light intensity within the perovskite films, leading to photodetectors with a responsivity of 11.2 A/W and a detectivity of 7.3 × 1010 Jones at 450 nm in wavelength. Compared with photodetectors without nanostructures, these photodetectors exhibit better visible light absorption. Finally, we demonstrate the application of these photodetector arrays in a prototype image sensor.
Collapse
Affiliation(s)
- Zhengtong Yao
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Yuting Xiong
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Hanyue Kang
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Xiuzhen Xu
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Jianhe Guo
- Guangdong
Provincial Key Laboratory of Sensing Technology and Biomedical
Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Wen Li
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| | - Xiaobin Xu
- Key
Laboratory of Advanced Civil Engineering Materials of Ministry of
Education, Key Laboratory of D&A for Metal-Functional Materials,
School of Materials Science & Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
10
|
Clark KM, Ray TR. Recent Advances in Skin-Interfaced Wearable Sweat Sensors: Opportunities for Equitable Personalized Medicine and Global Health Diagnostics. ACS Sens 2023; 8:3606-3622. [PMID: 37747817 PMCID: PMC11211071 DOI: 10.1021/acssensors.3c01512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Recent advances in skin-interfaced wearable sweat sensors enable the noninvasive, real-time monitoring of biochemical signals associated with health and wellness. These wearable platforms leverage microfluidic channels, biochemical sensors, and flexible electronics to enable the continuous analysis of sweat-based biomarkers such as electrolytes, metabolites, and hormones. As this field continues to mature, the potential of low-cost, continuous personalized health monitoring enabled by such wearable sensors holds significant promise for addressing some of the formidable obstacles to delivering comprehensive medical care in under-resourced settings. This Perspective highlights the transformative potential of wearable sweat sensing for providing equitable access to cutting-edge healthcare diagnostics, especially in remote or geographically isolated areas. It examines the current understanding of sweat composition as well as recent innovations in microfluidic device architectures and sensing strategies by showcasing emerging applications and opportunities for innovation. It concludes with a discussion on expanding the utility of wearable sweat sensors for clinically relevant health applications and opportunities for enabling equitable access to innovation to address existing health disparities.
Collapse
Affiliation(s)
- Kaylee M. Clark
- Department of Mechanical Engineering, University of Hawai’i at Mãnoa, Honolulu, HI 96822, USA
| | - Tyler R. Ray
- Department of Mechanical Engineering, University of Hawai’i at Mãnoa, Honolulu, HI 96822, USA
- Department of Cell and Molecular Biology, John. A. Burns School of Medicine, University of Hawai’i at Mãnoa, Honolulu, HI 96813, USA
| |
Collapse
|
11
|
Lazaro A, Villarino R, Lazaro M, Canellas N, Prieto-Simon B, Girbau D. Recent Advances in Batteryless NFC Sensors for Chemical Sensing and Biosensing. BIOSENSORS 2023; 13:775. [PMID: 37622861 PMCID: PMC10452174 DOI: 10.3390/bios13080775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/26/2023]
Abstract
This article reviews the recent advances in the field of batteryless near-field communication (NFC) sensors for chemical sensing and biosensing. The commercial availability of low-cost commercial NFC integrated circuits (ICs) and their massive integration in smartphones, used as readers and cloud interfaces, have aroused great interest in new batteryless NFC sensors. The fact that coil antennas are not importantly affected by the body compared with other wireless sensors based on far-field communications makes this technology suitable for future wearable point-of-care testing (PoCT) devices. This review first compares energy harvesting based on NFC to other energy-harvesting technologies. Next, some practical recommendations for designing and tuning NFC-based tags are described. Power transfer is key because in most cases, the energy harvested has to be stable for several seconds and not contaminated by undesired signals. For this reason, the effect of the dimensions of the coils and the conductivity on the wireless power transfer is thoroughly discussed. In the last part of the review, the state of the art in NFC-based chemical and biosensors is presented. NFC-based tags (or sensor tags) are mainly based on commercial or custom NFC ICs, which are used to harvest the energy from the RF field generated by the smartphone to power the electronics. Low-consumption colorimeters and potentiostats can be integrated into these NFC tags, opening the door to the integration of chemical sensors and biosensors, which can be harvested and read from a smartphone. The smartphone is also used to upload the acquired information to the cloud to facilitate the internet of medical things (IoMT) paradigm. Finally, several chipless sensors recently proposed in the literature as a low-cost alternative for chemical applications are discussed.
Collapse
Affiliation(s)
- Antonio Lazaro
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, 43007 Tarragona, Spain; (R.V.); (M.L.); (N.C.); (B.P.-S.); (D.G.)
| | - Ramon Villarino
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, 43007 Tarragona, Spain; (R.V.); (M.L.); (N.C.); (B.P.-S.); (D.G.)
| | - Marc Lazaro
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, 43007 Tarragona, Spain; (R.V.); (M.L.); (N.C.); (B.P.-S.); (D.G.)
| | - Nicolau Canellas
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, 43007 Tarragona, Spain; (R.V.); (M.L.); (N.C.); (B.P.-S.); (D.G.)
| | - Beatriz Prieto-Simon
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, 43007 Tarragona, Spain; (R.V.); (M.L.); (N.C.); (B.P.-S.); (D.G.)
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - David Girbau
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, 43007 Tarragona, Spain; (R.V.); (M.L.); (N.C.); (B.P.-S.); (D.G.)
| |
Collapse
|
12
|
Shu J, Wang J, Cheng KCC, Yeung LF, Li Z, Tong RKY. An End-to-End Dynamic Posture Perception Method for Soft Actuators Based on Distributed Thin Flexible Porous Piezoresistive Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:6189. [PMID: 37448037 DOI: 10.3390/s23136189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
This paper proposes a method for accurate 3D posture sensing of the soft actuators, which could be applied to the closed-loop control of soft robots. To achieve this, the method employs an array of miniaturized sponge resistive materials along the soft actuator, which uses long short-term memory (LSTM) neural networks to solve the end-to-end 3D posture for the soft actuators. The method takes into account the hysteresis of the soft robot and non-linear sensing signals from the flexible bending sensors. The proposed approach uses a flexible bending sensor made from a thin layer of conductive sponge material designed for posture sensing. The LSTM network is used to model the posture of the soft actuator. The effectiveness of the method has been demonstrated on a finger-size 3 degree of freedom (DOF) pneumatic bellow-shaped actuator, with nine flexible sponge resistive sensors placed on the soft actuator's outer surface. The sensor-characterizing results show that the maximum bending torque of the sensor installed on the actuator is 4.7 Nm, which has an insignificant impact on the actuator motion based on the working space test of the actuator. Moreover, the sensors exhibit a relatively low error rate in predicting the actuator tip position, with error percentages of 0.37%, 2.38%, and 1.58% along the x-, y-, and z-axes, respectively. This work is expected to contribute to the advancement of soft robot dynamic posture perception by using thin sponge sensors and LSTM or other machine learning methods for control.
Collapse
Affiliation(s)
- Jing Shu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Junming Wang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Kenneth Chik-Chi Cheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Ling-Fung Yeung
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Zheng Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
13
|
Zhang Y, Liao J, Li Z, Hu M, Bian C, Lin S. All fabric and flexible wearable sensors for simultaneous sweat metabolite detection and high-efficiency collection. Talanta 2023; 260:124610. [PMID: 37146456 DOI: 10.1016/j.talanta.2023.124610] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Wearable sweat electrochemical sensors have attracted wide attention due to their advantages of non-invasive, portable, real-time monitoring, etc. However, existing sensors still have some problems with efficient sweat collection. Microfluidic channel technology and electrospinning technology are commonly used to collect sweat efficiently, but there are some limitations such as complex channel design and multiple spinning parameters. Besides, existing sensors are mostly based on flexible polymers, such as, PET, PDMS, PI and PI, which have limited wearability and permeability. Based on the above, all fabric and dual-function flexible wearable sweat electrochemical sensor is proposed in this paper. This sensor uses fabric as the raw material to implement the directional transport of sweat and the multi-component integrated detection dual functions. Meanwhile, the high-efficiency collection of sweat is obtained by a Janus fabric, wherein one side of the selected silk is superhydrophobic graft treated and the other side is hydrophilic plasma treated. Therefore, the resulting Janus fabric can effectively transfer sweat from the skin side to the electrode, and the minimum sweat droplet can reach 0.2 μL to achieve micro-volume collection. Besides, the patterned sensor, made of silk-based carbon cloth, is fabricated using a simple laser engraving, which could detect Na+, pH, and glucose instantaneously. As a result, these proposed sensors can achieve good sensing performance and high-efficiency sweat collection dual functionality; moreover, it has good flexibility and comfortable wearability.
Collapse
Affiliation(s)
- Yingwen Zhang
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Jianjun Liao
- School of Ecological and Environmental Sciences, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
| | - Zehao Li
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Mingxu Hu
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Chao Bian
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shiwei Lin
- School of Materials Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| |
Collapse
|
14
|
Wang L, Zhu W, Zhang J, Zhu JJ. Miniaturized Microfluidic Electrochemical Biosensors Powered by Enzymatic Biofuel Cell. BIOSENSORS 2023; 13:175. [PMID: 36831941 PMCID: PMC9953942 DOI: 10.3390/bios13020175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Electrochemical biosensors, in which enzymatic biofuel cells simultaneously work as energy power and signal generators, have become a research hotspot. They display the merits of power self-support, a simplified structure, in vivo operational feasibility, online and timely monitoring, etc. Since the concept of enzymatic biofuel cell-powered biosensors (EBFC-SPBs) was first proposed, its applications in health monitoring have scored tremendous achievements. However, the creation and practical application of portable EBFC-SPBs are still impeded by the difficulty in their miniaturization. In recent years, the booming microfluidic technology has powerfully pushed forward the progress made in miniaturized and portable EBFC-SPBs. This brief review recalls and summarizes the achievements and progress made in miniaturized EBFC-SPBs. In addition, we also discuss the advantages and challenges that microfluidic and screen-printing technologies provide to wearable and disposable EBFC-SPBs.
Collapse
Affiliation(s)
- Linlin Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
- School of Chemistry and Chemical Engineering, School of Environment, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Wenlei Zhu
- School of Chemistry and Chemical Engineering, School of Environment, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Jianrong Zhang
- School of Chemistry and Chemical Engineering, School of Environment, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, School of Environment, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Yuan Y, Liu B, Li H, Li M, Song Y, Wang R, Wang T, Zhang H. Flexible Wearable Sensors in Medical Monitoring. BIOSENSORS 2022; 12:bios12121069. [PMID: 36551036 PMCID: PMC9775172 DOI: 10.3390/bios12121069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 05/31/2023]
Abstract
The popularity of health concepts and the wave of digitalization have driven the innovation of sensors in the medical field. Such continual development has made sensors progress in the direction of safety, flexibility, and intelligence for continuous monitoring of vital signs, which holds considerable promise for changing the way humans live and even treat diseases. To this end, flexible wearable devices with high performance, such as high sensitivity, high stability, and excellent biodegradability, have attracted strong interest from scientists. Herein, a review of flexible wearable sensors for temperature, heart rate, human motion, respiratory rate, glucose, and pH is highlighted. In addition, engineering issues are also presented, focusing on material selection, sensor fabrication, and power supply. Finally, potential challenges facing current technology and future directions of wearable sensors are also discussed.
Collapse
Affiliation(s)
- Yingying Yuan
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Hui Li
- Department of Nursing, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang 110042, China
| | - Mo Li
- Department of Nursing, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang 110042, China
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang 110042, China
| | - Runze Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Tianlu Wang
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
- Department of Radiotherapy, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang 110042, China
| | - Hangyu Zhang
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
16
|
Lu Y, Yang G, Shen Y, Yang H, Xu K. Multifunctional Flexible Humidity Sensor Systems Towards Noncontact Wearable Electronics. NANO-MICRO LETTERS 2022; 14:150. [PMID: 35869398 PMCID: PMC9307709 DOI: 10.1007/s40820-022-00895-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/02/2022] [Indexed: 05/14/2023]
Abstract
In the past decade, the global industry and research attentions on intelligent skin-like electronics have boosted their applications in diverse fields including human healthcare, Internet of Things, human-machine interfaces, artificial intelligence and soft robotics. Among them, flexible humidity sensors play a vital role in noncontact measurements relying on the unique property of rapid response to humidity change. This work presents an overview of recent advances in flexible humidity sensors using various active functional materials for contactless monitoring. Four categories of humidity sensors are highlighted based on resistive, capacitive, impedance-type and voltage-type working mechanisms. Furthermore, typical strategies including chemical doping, structural design and Joule heating are introduced to enhance the performance of humidity sensors. Drawing on the noncontact perception capability, human/plant healthcare management, human-machine interactions as well as integrated humidity sensor-based feedback systems are presented. The burgeoning innovations in this research field will benefit human society, especially during the COVID-19 epidemic, where cross-infection should be averted and contactless sensation is highly desired.
Collapse
Affiliation(s)
- Yuyao Lu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Geng Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Yajing Shen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Kaichen Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| |
Collapse
|
17
|
Zhang L, Wang L, Li J, Cui C, Zhou Z, Wen L. Surface Engineering of Laser-Induced Graphene Enables Long-Term Monitoring of On-Body Uric Acid and pH Simultaneously. NANO LETTERS 2022; 22:5451-5458. [PMID: 35731860 DOI: 10.1021/acs.nanolett.2c01500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Laser-induced graphene (LIG) suffers from serious decay in long-term biosensing, which greatly restricts its practical applications. Herein, we report a new strategy to engineer the LIG surface with Au clusters and chitosan sequentially to form a C-Au-LIG electrode with a superhydrophilic and highly conductive 3D graphene surface, which demonstrates superior performance and negligible decay in both long-term storage and practical usage in vitro and in vivo environments. Moreover, the C-Au-LIG electrode can be used for detecting uric acid (UA) and pH simultaneously from a single differential pulse voltammetry curve with low-detection limitation, high accuracy, and negligible interference with other sweat biomarkers. The integrated C-Au-LIG wearable biosensor was employed to continuously monitor the UA content in human sweat, which can well reflect the daily intake of purines for at least 10 days. Therefore, the C-Au-LIG electrode demonstrates significant application potential and provides inspiration for surface engineering of other biosensor materials and electrodes.
Collapse
Affiliation(s)
- Liqiang Zhang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Lang Wang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Jiye Li
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Can Cui
- Department of Materials Science and Engineering & Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States of America
| | - Ziqian Zhou
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Liaoyong Wen
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| |
Collapse
|