1
|
Ranucci E, Treccani S, Ferruti P, Alongi J. The Seed Germination Test as a Valuable Tool for the Short-Term Phytotoxicity Screening of Water-Soluble Polyamidoamines. Polymers (Basel) 2024; 16:1744. [PMID: 38932092 PMCID: PMC11207469 DOI: 10.3390/polym16121744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Six differently charged amphoteric polyamidoamines, synthesized by the polyaddition of N,N'-methylenebisacrylamide to alanine, leucine, serine, arginine (M-ARG), glutamic acid (M-GLU) and a glycine/cystine mixture, were screened for their short-term phytotoxicity using a seed germination test. Lepidium sativum L. seeds were incubated in polyamidoamine water solutions with concentrations ranging from 0.156 to 2.5 mg mL-1 at 25 ± 1 °C for 120 h. The seed germination percentage (SG%), an indicator of acute toxicity, and both root and shoot elongation, related to plant maturation, were the considered endpoints. The germination index (GI) was calculated as the product of relative seed germination times relative radical growth. The SG% values were in all cases comparable to those obtained in water, indicating no detectable acute phytotoxicity of the polyamidoamines. In the short term, the predominantly positively charged M-ARG proved to be phytotoxic at all concentrations (GI < 0.8), whereas the predominantly negatively charged M-GLU proved to be biostimulating at intermediate concentrations (GI > 1) and slightly inhibitory at 2.5 mg mL-1 (0.8 < GI < 1). Overall, polyamidoamine phytotoxicity could be correlated to charge distribution, demonstrating the potential of the test for predicting and interpreting the eco-toxicological behavior of water-soluble polyelectrolytes.
Collapse
Affiliation(s)
| | | | | | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy; (E.R.); (S.T.); (P.F.)
| |
Collapse
|
2
|
Beduini A, Albanese D, Carosio F, Manfredi A, Ranucci E, Ferruti P, Alongi J. On the Suitability of Phosphonate-Containing Polyamidoamines as Cotton Flame Retardants. Polymers (Basel) 2023; 15:polym15081869. [PMID: 37112016 PMCID: PMC10144353 DOI: 10.3390/polym15081869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
A novel polyamidoamine (M-PCASS) bearing a disulfide group and two phosphonate groups per repeat unit was obtained by reacting N,N'-methylenebisacrylamide with a purposely designed bis-sec-amine monomer, namely, tetraethyl(((disulfanediylbis(ethane-2,1-diyl))bis(azanediyl))bis(ethane-2,1-diyl))bis(phosphonate) (PCASS). The aim was to ascertain whether the introduction of phosphonate groups, well-known for inducing cotton charring in the repeat unit of a disulfide-containing PAA, increased its already remarkable flame retardant efficacy for cotton. The performance of M-PCASS was evaluated by different combustion tests, choosing M-CYSS, a polyamidoamine containing a disulfide group but no phosphonate groups, as a benchmark. In horizontal flame spread tests (HFSTs), M-PCASS was a more effective flame retardant than M-CYSS at lower add-ons with no afterglow. In vertical flame spread tests, the only effect was afterglow suppression with no self-extinguishment even at add-ons higher than in HFSTs. In oxygen-consumption cone calorimetry tests, M-PCASS decreased the heat release rate peak of cotton by 16%, the CO2 emission by 50%, and the smoke release by 83%, leaving a 10% residue to be compared with a negligible residue for untreated cotton. Overall, the set of results obtained envisage that the newly synthesized phosphonate-containing PAA M-PCASS may be suitable for specific applications as flame retardant, where smoke suppression or reduction of total gas released is a key requirement.
Collapse
Affiliation(s)
- Alessandro Beduini
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy
| | - Domenico Albanese
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy
| | - Federico Carosio
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Alessandria Campus, Via T. Michel 5, 15121 Alessandria, Italy
| | - Amedea Manfredi
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy
| | - Paolo Ferruti
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy
| | - Jenny Alongi
- Dipartimento di Chimica, Università Degli Studi di Milano, Via C. Golgi 19, 20133 Milan, Italy
| |
Collapse
|
3
|
Ferruti P, Alongi J, Barabani E, Manfredi A, Ranucci E. Silk/Polyamidoamine Membranes for Removing Chromium VI from Water. Polymers (Basel) 2023; 15:polym15081871. [PMID: 37112018 PMCID: PMC10147069 DOI: 10.3390/polym15081871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Polyamidoamine hydrogels prepared by the radical post-polymerization of α,ω-bisacrylamide-terminated M-AGM oligomers, in turn obtained by the polyaddition of 4-aminobutylguanidine with N,N'-methylenebisacrylamide, were reinforced with raw silk fibers, which can establish covalent bonds with the polyamidoamine matrix via reaction of the amine groups in the lysine residues with the acrylamide terminals of the M-AGM oligomer. Silk/M-AGM membranes were prepared by impregnating silk mats with M-AGM aqueous solutions and subsequent crosslinking by UV irradiation. The guanidine pendants of the M-AGM units imparted the ability to form strong but reversible interactions with oxyanions, including the highly toxic chromate ions. The potential of the silk/M-AGM membranes to purify Cr(VI)-contaminated water down to the drinkability level, that is, below 50 ppb, was tested by performing sorption experiments both in static (Cr(VI) concentration 20-2.5 ppm) and flow conditions (Cr(VI) concentration 10-1 ppm). After static sorption experiments, the Cr(VI)-loaded silk/M-AGM membranes could easily be regenerated via treatment with a 1 M sodium hydroxide solution. Dynamic tests performed using two stacked membranes and a 1 ppm Cr(VI) aqueous solution reduced Cr(VI) concentration down to 4 ppb. Remarkably, the use of renewable sources, the environmentally friendly preparation process, and the goal achieved meet eco-design requirements.
Collapse
Affiliation(s)
- Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Emanuele Barabani
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Amedea Manfredi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi 19, 20133 Milano, Italy
| |
Collapse
|
4
|
L-Arginine-Derived Polyamidoamine Oligomers Bearing at Both Ends β-Cyclodextrin Units as pH-Sensitive Curcumin Carriers. Polymers (Basel) 2022; 14:polym14153193. [PMID: 35956707 PMCID: PMC9371169 DOI: 10.3390/polym14153193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
The aza-Michael polyaddition of L-arginine and N,N′-methylene-bis-acrylamide gives the biocompatible and easily cell-internalized polyamidoamine ARGO7. By controlled synthesis, two ARGO7 oligomers, namely a trimer and a pentamer, bearing acrylamide terminal units, were obtained as precursors of the β-cyclodextrin-end-terminated oligomers P3 and P5, which have been shown to encapsulate curcumin at both pH 7.4 and 4.5. After lyophilization, P3- and P5-curcumin complexes gave stable water solutions. The apparent solubility of encapsulated curcumin was in the range 20–51 μg mL−1, that is, three orders of magnitude higher than the water solubility of free curcumin (0.011 μg mL−1). The drug release profiles showed induction periods both at pH levels 4.5 and 7.4, suggesting a diffusive release mechanism, as confirmed by kinetic studies. The release rate of curcumin was higher at pH 7.4 than at pH 4.5 and, in both cases, it was higher for the P5 complex. Encapsulated curcumin was more photostable than the free drug. Molecular mechanics and molecular dynamics simulations explain at atomistic level the formation of aggregates due to favorable van der Waals interactions. The drug molecules interact with the external surface of carriers or form inclusion complexes with the β-cyclodextrin cavities. The aggregate stability is higher at pH 4.5.
Collapse
|
5
|
Alongi J, Costantini A, Ferruti P, Ranucci E. Evaluation of the eco-compatibility of polyamidoamines by means of seed germination test. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
The Thermo-Oxidative Behavior of Cotton Coated with an Intumescent Flame Retardant Glycine-Derived Polyamidoamine: A Multi-Technique Study. Polymers (Basel) 2021; 13:polym13244382. [PMID: 34960933 PMCID: PMC8707849 DOI: 10.3390/polym13244382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022] Open
Abstract
Linear polyamidoamines (PAAs) derived from the polyaddition of natural α-amino acids and N,N′-methylene bis(acrylamide) are intumescent flame retardants for cotton. Among them, the glycine-derived M-GLY extinguished the flame in horizontal flame spread tests at 4% by weight add-on. This paper reports on an extensive study aimed at understanding the molecular-level transformations of M-GLY-treated cotton upon heating in air at 300 °C, 350 °C and 420 °C. Thermogravimetric analysis (TGA) identified different thermal-oxidative decomposition stages and, coupled to Fourier transform infrared spectroscopy, allowed the volatile species released upon heating to be determined, revealing differences in the decomposition pattern of treated and untreated cotton. XPS analysis of the char residues of M-GLY-treated cotton revealed the formation of aromatic nanographitic char at lower temperature with respect to untreated cotton. Raman spectroscopy of the char residues provided indications on the degree of graphitization of treated and untreated cotton at the three reference temperatures. Solid state 13C nuclear magnetic resonance spectroscopy (NMR) provided information on the char structure as a function of the treatment temperature, clearly indicating that M-GLY favors the carbonization of cotton with the formation of more highly condensed aromatic structures.
Collapse
|
7
|
Beduini A, Carosio F, Ferruti P, Ranucci E, Alongi J. Polyamidoamines Derived from Natural α-Amino Acids as Effective Flame Retardants for Cotton. Polymers (Basel) 2021; 13:polym13213714. [PMID: 34771271 PMCID: PMC8588117 DOI: 10.3390/polym13213714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 01/10/2023] Open
Abstract
In this paper, bioinspired polyamidoamines (PAAs) were synthesized from N,N′-methylenebisacrylamide and nine natural α-amino acids: L-alanine, L-valine, L-leucine (M-LEU), L-histidine, L-serine, L-asparagine, L-glutamine (M-GLN), L-aspartic acid and L-glutamic acid (M-GLU) and their performance as flame retardants (FRs) for cotton were determined. The aim was to ascertain if the ability to protect cotton from fire by the process of intumescing, previously found for the glycine-derived M-GLY, was a general feature of α-amino acid-derived PAAs. None of the PAAs ignited by flame impingement, apart from M-LEU, which burned for a few seconds leaving 93% of residue. All of them formed carbon- and oxygen-rich, porous chars with a graphitic structure in the air at 350 °C, as revealed by X-ray photoelectron spectroscopy. All samples were tested as FRs for cotton by horizontal flame spread tests. At a 5% add-on, M-GLU and M-GLN extinguished the flame. The same results were obtained with all the other PAAs at a 7% add-on. The α-amino acid residues influenced the FR performance. The most effective were those that, by heating, were most suitable for producing thermally stable cyclic aromatic structures. All PAA-treated cotton samples, even when burning, left significant residues, which, according to scanning electron microscopy analysis, maintained the original cotton texture.
Collapse
Affiliation(s)
- Alessandro Beduini
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (A.B.); (P.F.); (E.R.)
| | - Federico Carosio
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Alessandria Campus, viale T. Michel, 15121 Alessandria, Italy;
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (A.B.); (P.F.); (E.R.)
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (A.B.); (P.F.); (E.R.)
| | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (A.B.); (P.F.); (E.R.)
- Correspondence: ; Tel.: +39–02-50314108
| |
Collapse
|
8
|
Gd3+ Doped CoFe2O4 Nanoparticles for Targeted Drug Delivery and Magnetic Resonance Imaging. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7040047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nanoparticles of CoGdxFe2 − xO4 (x = 0%, 25%, 50%) synthesized via sol–gel auto combustion technique and encapsulated within a polymer (Eudragit E100) shell containing curcumin by single emulsion solvent evaporation technique were formulated in this study. Testing of synthesized nanoparticles was carried out by using different characterization techniques, to investigate composition, crystallinity, size, morphology, surface charge, functional groups and magnetic properties of the samples. The increased hydrophilicity resulted in sustained drug release of 90.6% and 95% for E1(CoGd0.25Fe1.75O4) and E2(CoGd0.50Fe1.5O4), respectively, over a time span of 24 h. The relaxivities of the best-chosen samples were measured by using a 3T magnetic resonance imaging (MRI) machine, and a high r2/r1 ratio of 43.64 and 23.34 for composition E1(CoGd0.25Fe1.75O4) and E2(CoGd0.50Fe1.5O4) suggests their ability to work as a better T2 contrast agent. Thus, these novel synthesized nanostructures cannot only enable MRI diagnosis but also targeted drug delivery.
Collapse
|
9
|
Marcioni M, Alongi J, Ranucci E, Malinconico M, Laurienzo P, Ferruti P, Manfredi A. Semi-Crystalline Hydrophobic Polyamidoamines: A New Family of Technological Materials? Polymers (Basel) 2021; 13:polym13071018. [PMID: 33806055 PMCID: PMC8036605 DOI: 10.3390/polym13071018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
The hitherto known polyamidoamines (PAAs) are not suitable as structural materials because they are usually water-soluble or swellable in water. This paper deals with the synthesis and characterization of semi-crystalline hydrophobic PAAs (H-PAAs) by combining different bis-sec-amines with bis-acrylamides obtained from C6–C12 bis-prim-amines. H-PAAs were initially obtained in a solution of benzyl alcohol, a solvent suitable for both monomers and polymers. Their number average molecular weights, M¯n, which were determined with 1H-NMR by evaluating the percentage of their terminal units, varied from 6000 to >10,000. The solubility, thermal properties, ignitability and water resistance of H-PAAs were determined. They were soluble in organic solvents, semi-crystalline and thermally stable. The most promising ones were also prepared using a bulk process, which has never been previously reported for PAA synthesis. In the form of films, these H-PAAs were apparently unaffected by water. The films underwent tensile and wettability tests. They showed similar Young moduli (260–263 MPa), whereas the maximum stress and the stress at break depended on the number of methylene groups of the starting bis-acrylamides. Their wettability was somewhat higher than that of common Nylons. Interestingly, none of the H-PAAs considered, either as films or powders, ignited after prolonged exposure to a methane flame.
Collapse
Affiliation(s)
- Massimo Marcioni
- Dipartimento di Chimica, Università Degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (M.M.); (J.A.); (E.R.)
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Alessandria Campus, Viale T. Michel, 15121 Alessandria, Italy
| | - Jenny Alongi
- Dipartimento di Chimica, Università Degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (M.M.); (J.A.); (E.R.)
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università Degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (M.M.); (J.A.); (E.R.)
| | - Mario Malinconico
- Istituto Polimeri, Compositi e Biomateriali (IPCB), Consiglio Nazionale Delle Ricerche, via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.M.); (P.L.)
| | - Paola Laurienzo
- Istituto Polimeri, Compositi e Biomateriali (IPCB), Consiglio Nazionale Delle Ricerche, via Campi Flegrei 34, 80078 Pozzuoli, Italy; (M.M.); (P.L.)
| | - Paolo Ferruti
- Dipartimento di Chimica, Università Degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (M.M.); (J.A.); (E.R.)
- Correspondence: (P.F.); (A.M.); Tel.: +39-02-50314128 (P.F.); +39-02-50314181 (A.M.)
| | - Amedea Manfredi
- Dipartimento di Chimica, Università Degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (M.M.); (J.A.); (E.R.)
- Correspondence: (P.F.); (A.M.); Tel.: +39-02-50314128 (P.F.); +39-02-50314181 (A.M.)
| |
Collapse
|
10
|
Aminodextran Coated CoFe 2O 4 Nanoparticles for Combined Magnetic Resonance Imaging and Hyperthermia. NANOMATERIALS 2020; 10:nano10112182. [PMID: 33147727 PMCID: PMC7692372 DOI: 10.3390/nano10112182] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Aminodextran (AMD) coated magnetic cobalt ferrite nanoparticles are synthesized via electrostatic adsorption of aminodextran onto magnetic nanoparticles and their potential theranostic application is evaluated. The uncoated and aminodextran-coated nanoparticles are characterized to determine their hydrodynamic size, morphology, chemical composition, zeta potential and magnetization. The aminodextran containing cobalt ferrite nanoparticles of nanometer size are positively charged in the pH range from 3 to 9 and exhibit saturation magnetization of 50 emu/g. The magnetic resonance imaging (MRI) indicates capability for diagnostics and a reduction in intensity with an increase in nanoparticle amount. The hyperthermia capability of the prepared particles shows their potential to generate suitable local heat for therapeutic purposes. There is a rise of 7 °C and 9 °C at 327 kHz and 981 kHz respectively and specific absorption rates (SAR) of aminodextran-coated nanoparticles are calculated to be 259 W/g and 518 W/g at the given frequencies larger than uncoated nanoparticles (0.02 W/g). The development of novel aminodextran coated magnetic cobalt ferrite nanoparticles has significant potential to enable and improve personalized therapy regimens, targeted cancer therapies and ultimately to overcome the prevalence of nonessential and overdosing of healthy tissues and organs.
Collapse
|
11
|
Hydroxypropyl Methylcellulose-Based Hydrogel Copolymeric for Controlled Delivery of Galantamine Hydrobromide in Dementia. Processes (Basel) 2020. [DOI: 10.3390/pr8111350] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The study aims to prepare a smart copolymeric for controlled delivery of Galantamine hydrobromide. The synthesis of the hydrogel was executed through free radical polymerization using HPMC (Hydroxypropyl methylcellulose) and pectin as polymers and acrylic acid as monomer. Cross-linking was performed by methylene bisacrylamide (MBA). HPMC-pectin-co-acrylic acid hydrogel was loaded with Galantamine hydrobromide (antidementia drug) as a model drug for treatment of Alzheimer based dementia. Formulated hydrogels (SN1–SN9) were characterized for Fourier transform-infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, and energy dispersive X-ray. Drug loading efficiency, gel fraction, measurements of porosity, and tensile strength were reported. Swelling and release studies were performed at pH 1.2 and 7.4. Drug liberation mechanism was evaluated by applying different release kinetic models. Galantamine hydrobromide was released from prepared hydrogels by Fickian release mechanism. Swelling, gel fraction, porosity, and drug release percentages were found to be dependent on hydroxypropyl methylcellulose, pectin, acrylic acid, and methylene bisacrylamide concentrations. By increasing HPMC amount, swelling was increased from 76.7% to 95.9%. Toxicity studies were conducted on albino male rabbits for a period of 14 days. Hematological and histopathological studies were carried out to evaluate safety level of hydrogel. Successfully prepared HPMC-pectin-co-acrylic acid hydrogel showed good swelling and release kinetics, which may help greatly in providing controlled release drug effect leading to enhanced patient compliance for dementia patients.
Collapse
|
12
|
Mascheroni L, Francia V, Rossotti B, Ranucci E, Ferruti P, Maggioni D, Salvati A. Light-Triggered Trafficking to the Cell Nucleus of a Cationic Polyamidoamine Functionalized with Ruthenium Complexes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34576-34587. [PMID: 32643926 PMCID: PMC7404250 DOI: 10.1021/acsami.0c08033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Strategies for endosomal escape and access to the cell nucleus are highly sought for nanocarriers to deliver their load efficiently following endocytosis. In this work, we have studied the uptake and intracellular trafficking of a polycationic polyamidoamine (PAA) endowed with a luminescent Ru complex, Ru-PhenAN, that shows unique trafficking to the cell nucleus. Live cell imaging confirmed the capacity of this polymer to access the nucleus, excluding artifacts due to cell fixation, and clarified that the mechanism of escape is light-triggered and relies on the presence of the Ru complexes and their capacity to absorb light and act as photosensitizers for singlet oxygen production. These results open up the possibility to use PAA-ruthenium complexes for targeted light-triggered delivery of genetic material or drugs to the cytosol and nucleus.
Collapse
Affiliation(s)
- Luca Mascheroni
- Dipartimento di
Chimica, Università degli Studi di
Milano, Via Golgi 19, 20133 Milan, Italy
- Department of Nanomedicine and Drug Targeting, Groningen Research
Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Valentina Francia
- Department of Nanomedicine and Drug Targeting, Groningen Research
Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Beatrice Rossotti
- Dipartimento di
Chimica, Università degli Studi di
Milano, Via Golgi 19, 20133 Milan, Italy
- Department of Nanomedicine and Drug Targeting, Groningen Research
Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Elisabetta Ranucci
- Dipartimento di
Chimica, Università degli Studi di
Milano, Via Golgi 19, 20133 Milan, Italy
| | - Paolo Ferruti
- Dipartimento di
Chimica, Università degli Studi di
Milano, Via Golgi 19, 20133 Milan, Italy
| | - Daniela Maggioni
- Dipartimento di
Chimica, Università degli Studi di
Milano, Via Golgi 19, 20133 Milan, Italy
| | - Anna Salvati
- Department of Nanomedicine and Drug Targeting, Groningen Research
Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- a.salvati.@rug.nl
| |
Collapse
|
13
|
Arioli M, Manfredi A, Alongi J, Ferruti P, Ranucci E. Highlight on the Mechanism of Linear Polyamidoamine Degradation in Water. Polymers (Basel) 2020; 12:E1376. [PMID: 32575401 PMCID: PMC7361999 DOI: 10.3390/polym12061376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022] Open
Abstract
This paper aims at elucidating the degradation mechanism of linear polyamidoamines (PAAs) in water. PAAs are synthesized by the aza-Michael polyaddition of prim-monoamines or bis-sec-amines with bisacrylamides. Many PAAs are water-soluble and have potential for biotechnological applications and as flame-retardants. PAAs have long been known to degrade in water at pH ≥ 7, but their degradation mechanism has never been explored in detail. Filling this gap was necessary to assess the suitability of PAAs for the above applications. To this aim, a small library of nine PAAs was expressly synthesized and their degradation mechanism in aqueous solution studied by 1H-NMR in different conditions of pH and temperature. The main degradation mechanism was in all cases the retro-aza-Michael reaction triggered by dilution but, in some cases, hints were detected of concurrent hydrolytic degradation. Most PAAs were stable at pH 4.0; all degraded at pH 7.0 and 9.0. Initially, the degradation rate was faster at pH 9.0 than at pH 7.0, but the percent degradation after 97 days was mostly lower. In most cases, at pH 7.0 the degradation followed first order kinetics. The degradation rates mainly depended on the basicity of the amine monomers. More basic amines acted as better leaving groups.
Collapse
Affiliation(s)
| | | | | | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (M.A.); (A.M.); (J.A.)
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (M.A.); (A.M.); (J.A.)
| |
Collapse
|
14
|
Beduini A, Carosio F, Ferruti P, Ranucci E, Alongi J. Sulfur-Based Copolymeric Polyamidoamines as Efficient Flame-Retardants for Cotton. Polymers (Basel) 2019; 11:E1904. [PMID: 31752336 PMCID: PMC6918177 DOI: 10.3390/polym11111904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/12/2019] [Accepted: 11/17/2019] [Indexed: 11/16/2022] Open
Abstract
The polyamidoamine derived from N,N'-methylenebisacrylamide (M) and glycine (G), M-G, has been shown to be an effective flame-retardant (FR) for cotton in horizontal flame spread tests (HFST), extinguishing the flame at 5% add-on. Its activity was attributed to its intrinsic intumescence. In vertical flame spread tests (VFST), M-G failed to extinguish the flame even at 30% add-on. Conversely, in VFST, the polyamidoamine derived from M and cystine (C), M-C, inhibited cotton combustion at 16% add-on, but in HFST failed to extinguish the flame below 12% add-on. Its activity was ascribed to the release of sulfur-containing volatiles acting as radical scavengers. In this work, the FR effectiveness of M-Gm-Cn copolymers with different G/C ratio was compared with that of the M-G and M-C homopolymers and of M-G/M-C blends of the same compositions. In HFST, both copolymers and blends extinguished the flame. In particular, M-G50-C50 and (M-G/M-C)50/50 extinguished the flame, even at 7% add-on. In VFST, the copolymers with ≥50% M-C units, similar to M-C, inhibited cotton combustion at 16% add-on. At the same add-on, the M-G/M-C blends failed to extinguish the flame. It may be concluded that, in contrast to blends, copolymers combined the merits of both homopolymers in all tests.
Collapse
Affiliation(s)
- Alessandro Beduini
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (A.B.); (P.F.); (E.R.)
| | - Federico Carosio
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Alessandria campus, viale T. Michel, 15121 Alessandria, Italy;
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (A.B.); (P.F.); (E.R.)
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (A.B.); (P.F.); (E.R.)
| | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy; (A.B.); (P.F.); (E.R.)
| |
Collapse
|
15
|
Alongi J, Ferruti P, Manfredi A, Carosio F, Feng Z, Hakkarainen M, Ranucci E. Superior flame retardancy of cotton by synergetic effect of cellulose-derived nano-graphene oxide carbon dots and disulphide-containing polyamidoamines. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.108993] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Mascheroni L, Dozzi MV, Ranucci E, Ferruti P, Francia V, Salvati A, Maggioni D. Tuning Polyamidoamine Design To Increase Uptake and Efficacy of Ruthenium Complexes for Photodynamic Therapy. Inorg Chem 2019; 58:14586-14599. [DOI: 10.1021/acs.inorgchem.9b02245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Luca Mascheroni
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Maria Vittoria Dozzi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Valentina Francia
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Anna Salvati
- Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Daniela Maggioni
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| |
Collapse
|
17
|
Ferruti F, Alongi J, Manfredi A, Ranucci E, Ferruti P. Controlled Synthesis of Linear Polyamidoamino Acids. Polymers (Basel) 2019; 11:E1324. [PMID: 31398875 PMCID: PMC6722684 DOI: 10.3390/polym11081324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 11/23/2022] Open
Abstract
Polyamidoamino acids (PAACs) are synthetic polymers prepared by the polyaddition of bisacrylamides with natural α-amino acids, which in the process maintain both their chirality and their amphoteric nature. This polymerization process is slow, but has the merits of taking place in water and of neither involving protection/de-protection steps nor releasing by-products. However, it leads to polydisperse polymers and, using α-amino acids mixtures, random copolymers. This paper presents a step-by-step polyaddition process leading to homo- and copolymeric PAACs with controlled sequences and controlled molecular weights. It exploits the much different rates of the two Michael addition steps of NH2 of α-amino acids with acrylamides, and the low solubility in organic solvents of the α-amino acid addition products. As a proof of principle, the controlled synthesis of the PAAC from l-arginine and N,N'-methylenebisacrylamide was performed up to a monodisperse product with 11 monomeric units and molecular weight 1840. This synthetic procedure was also tested with l-alanine. All intermediates were isolated and characterized. Noticeably, all of them were α,ω-difunctionalized with either acrylamides or sec-amines and were, in fact, building blocks with potential for preparing complex macromolecular architectures. In a first instance, copolymers with controlled sequences of amidoamine- and amidoamino acid units were prepared.
Collapse
Affiliation(s)
- Federica Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Amedea Manfredi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
18
|
Rondelli V, Cola ED, Koutsioubas A, Alongi J, Ferruti P, Ranucci E, Brocca P. Mucin Thin Layers: A Model for Mucus-Covered Tissues. Int J Mol Sci 2019; 20:E3712. [PMID: 31362433 PMCID: PMC6695901 DOI: 10.3390/ijms20153712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022] Open
Abstract
The fate of macromolecules of biological or pharmacological interest that enter the mucus barrier is a current field of investigation. Studies of the interaction between the main constituent of mucus, mucins, and molecules involved in topical transmucoidal drug or gene delivery is a prerequisite for nanomedicine design. We studied the interaction of mucin with the bio-inspired arginine-derived amphoteric polymer d,l-ARGO7 by applying complementary techniques. Small angle X-ray scattering in bulk unveiled the formation of hundreds of nanometer-sized clusters, phase separated from the mucin mesh. Quartz microbalance with dissipation and neutron reflectometry measurements on thin mucin layers deposited on silica supports highlighted the occurrence of polymer interaction with mucin on the molecular scale. Rinsing procedures on both experimental set ups showed that interaction induces alteration of the deposited hydrogel. We succeeded in building up a new significant model for epithelial tissues covered by mucus, obtaining the deposition of a mucin layer 20 Å thick on the top of a glycolipid enriched phospholipid single membrane, suitable to be investigated by neutron reflectometry. The model is applicable to unveil the cross structural details of mucus-covered epithelia in interaction with macromolecules within the Å discreteness.
Collapse
Affiliation(s)
- Valeria Rondelli
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, L.I.T.A., Via F.lli Cervi 93, 20090 Segrate, Italy.
| | - Emanuela Di Cola
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, L.I.T.A., Via F.lli Cervi 93, 20090 Segrate, Italy
| | - Alexandros Koutsioubas
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Jenny Alongi
- Department of Chemistry, Università degli Studi di Milano, Via Camillo Golgi 19, 20133 Milano, Italy
| | - Paolo Ferruti
- Department of Chemistry, Università degli Studi di Milano, Via Camillo Golgi 19, 20133 Milano, Italy
| | - Elisabetta Ranucci
- Department of Chemistry, Università degli Studi di Milano, Via Camillo Golgi 19, 20133 Milano, Italy
| | - Paola Brocca
- Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, L.I.T.A., Via F.lli Cervi 93, 20090 Segrate, Italy
| |
Collapse
|
19
|
Lazzari F, Manfredi A, Alongi J, Marinotto D, Ferruti P, Ranucci E. d-, l- and d,l-Tryptophan-Based Polyamidoamino Acids: pH-Dependent Structuring and Fluorescent Properties. Polymers (Basel) 2019; 11:E543. [PMID: 30960527 PMCID: PMC6473350 DOI: 10.3390/polym11030543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/29/2022] Open
Abstract
Chiral polyamidoamino acids were obtained by polyaddition of N,N'-methylenebisacrylamide with d-, d,l- and l-tryptophan (M-d-Trp, M-d,l-Trp and M-l-Trp). l-tryptophan/glycine copolymers, M-G-l-Trp₅, M-G-l-Trp10, M-G-l-Trp20 and M-G-l-Trp40, were prepared from l-tryptophan/glycine mixtures. These polymers were amphoteric, with acid-base properties similar to those of the parent amino acids. The l-tryptophan/glycine copolymers with high glycine content were water soluble in the pH range 2-12. M-G-l-Trp40 showed a solubility gap centred at pH 4.5 and all tryptophan homopolymers were soluble only at pH > 7. Dynamic light scattering measurements performed in their solubility ranges, namely 2-11 M-G-l-Trp₅, M-G-l-Trp10 and M-G-l-Trp20 and 7-11 for M-G-l-Trp40, M-d-Trp, M-l-Trp and M-d,l-Trp, showed that the size of all samples did not significantly vary with pH. Both M-l-Trp and M-G-l-Trp copolymers showed pH-dependent circular dichroism spectra in the wavelength interval 200⁻280 nm, revealing structuring. All samples were fluorescent. Their emission spectra were unstructured and, if normalized for their tryptophan content, almost superimposable at the same pH, providing evidence that only tryptophan governed the photoluminescence properties. Changing pH induced in all cases a slight shift of the emission wavelength maximum ascribed to the modification of the microenvironment surrounding the indole ring induced by different protonation degrees.
Collapse
Affiliation(s)
- Federica Lazzari
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| | - Amedea Manfredi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| | - Daniele Marinotto
- Istituto di Scienze e Tecnologie Molecolari (ISTM-CNR), via C. Golgi 19, 20133 Milano, Italy.
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| |
Collapse
|