1
|
Ragazzini I, Gualandi I, D'Altri G, Di Matteo V, Yeasmin L, Cassani MC, Scavetta E, Bernardi E, Ballarin B. Polyaniline/poly (2-acrylamido-2-methyl-1-propanesulfonic acid) modified cellulose as promising material for sensors design. Carbohydr Polym 2023; 316:121079. [PMID: 37321752 DOI: 10.1016/j.carbpol.2023.121079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
A material based on cellulose coated with polyaniline/poly (2-acrylamido-2-methyl-1-propanesulfonic acid) (Cell/PANI-PAMPSA) was synthesized in a simple way starting from cellulose fibres, aniline and using PAMPSA as dopant. The morphology, mechanical properties, thermal stability, and electrical conductivity were investigated by means of several complementary techniques. The obtained results highlight the excellent features of the Cell/PANI-PAMPSA composite with respect to the Cell/PANI one. Based on the promising performance of this material, novel device functions and wearable applications have been tested. We focused on its possible single use as: i) humidity sensors and ii) disposable biomedical sensors to provide immediate diagnostic services as close to the patient as possible for heart rate or respiration activity monitoring. To our knowledge, this is the first time that Cell/PANI-PAMPSA system has been used for such applications.
Collapse
Affiliation(s)
- I Ragazzini
- Department of Industrial Chemistry "Toso Montanari", Bologna University, UdR INSTM of Bologna, Via Risorgimento 4, I-40136, Bologna, Italy
| | - I Gualandi
- Department of Industrial Chemistry "Toso Montanari", Bologna University, UdR INSTM of Bologna, Via Risorgimento 4, I-40136, Bologna, Italy; Center for Industrial Research-Fonti Rinnovabili, Ambiente, Mare e Energia CIRI FRAME University of Bologna, Viale del Risorgimento 2, I-40136 Bologna, Italy.
| | - G D'Altri
- Department of Industrial Chemistry "Toso Montanari", Bologna University, UdR INSTM of Bologna, Via Risorgimento 4, I-40136, Bologna, Italy
| | - V Di Matteo
- Department of Industrial Chemistry "Toso Montanari", Bologna University, UdR INSTM of Bologna, Via Risorgimento 4, I-40136, Bologna, Italy
| | - L Yeasmin
- Department of Industrial Chemistry "Toso Montanari", Bologna University, UdR INSTM of Bologna, Via Risorgimento 4, I-40136, Bologna, Italy
| | - M C Cassani
- Department of Industrial Chemistry "Toso Montanari", Bologna University, UdR INSTM of Bologna, Via Risorgimento 4, I-40136, Bologna, Italy; Center for Industrial Research-Advanced Applications in Mechanical Engineering and Materials Technology CIRI MAM University of Bologna, Viale del Risorgimento 2, I-40136 Bologna, Italy
| | - E Scavetta
- Department of Industrial Chemistry "Toso Montanari", Bologna University, UdR INSTM of Bologna, Via Risorgimento 4, I-40136, Bologna, Italy
| | - E Bernardi
- Department of Industrial Chemistry "Toso Montanari", Bologna University, UdR INSTM of Bologna, Via Risorgimento 4, I-40136, Bologna, Italy; Center for Industrial Research-Fonti Rinnovabili, Ambiente, Mare e Energia CIRI FRAME University of Bologna, Viale del Risorgimento 2, I-40136 Bologna, Italy
| | - B Ballarin
- Department of Industrial Chemistry "Toso Montanari", Bologna University, UdR INSTM of Bologna, Via Risorgimento 4, I-40136, Bologna, Italy; Center for Industrial Research-Advanced Applications in Mechanical Engineering and Materials Technology CIRI MAM University of Bologna, Viale del Risorgimento 2, I-40136 Bologna, Italy; Center for Industrial Research-Fonti Rinnovabili, Ambiente, Mare e Energia CIRI FRAME University of Bologna, Viale del Risorgimento 2, I-40136 Bologna, Italy.
| |
Collapse
|
2
|
Bajaber MA, Anjum MN, Ibrahim M, Farooq T, Ahmad MN, Abideen ZU. Synthesis and Characterization of Hydroxyethyl Cellulose Grafted with Copolymer of Polyaniline and Polypyrrole Biocomposite for Adsorption of Dyes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238238. [PMID: 36500331 PMCID: PMC9739646 DOI: 10.3390/molecules27238238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
The emerging concepts of sustainable textiles and controlled production strategy demands ideally zero emissions of contaminants into the aquatic environment. However, the currently in-practiced conventional processes in textiles dispose of a number of contaminants especially super toxic synthetic dyes as effluents. In recent years, nanomaterials have become attractive choice for eco-friendly removal of organic dyestuff. Accordingly, this article reports synthesis and characterization of biocomposite wherein copolymer of polyaniline (PANI) and Polypyrrole (PPY) was grafted onto hydroxyethyl cellulose (HEC). Further, adsorption properties of as-prepared composite were evaluated using textile dyes Rhodamine B (RhB) and methyl Orange (MO)- as model adsorbate. The characterization of novel biocomposite (HEC/PANI-PPy) was carried out using Fourier Transform Infrared (FT-IR), Brunauer-Emmett-Teller analyzer (BET), Scanning Electron Microscope (SEM), and powder X-ray diffraction (XRD). The operational parameters such as dye initial concentration, adsorbent amount, pH and contact time were also studied to evaluate the efficiency level of the prepared biocomposite. Interestingly, the composite-mediated adsorption of RhB and MO followed pseudo-second order and the Langmuir isotherm. It is found that the adsorption capacity HEC/PANI-PPy is 30.06 and 29.3 for RhB and MO respectively. Thus, HEC/PANI-PPy is an inexpensive and highly efficient adsorbent that could be employed for could be employed for the separation and removal of toxic organic dyes from polluted textile effluents.
Collapse
Affiliation(s)
- Majed A. Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Naveed Anjum
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Correspondence: (M.N.A.); (Z.u.A.)
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Tahir Farooq
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Mirza Nadeem Ahmad
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Zain ul Abideen
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Correspondence: (M.N.A.); (Z.u.A.)
| |
Collapse
|
3
|
Razzak A, Khiari R, Moussaoui Y, Belgacem MN. Cellulose Nanofibers from Schinus molle: Preparation and Characterization. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196738. [PMID: 36235273 PMCID: PMC9572333 DOI: 10.3390/molecules27196738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022]
Abstract
Schinus molle (SM) was investigated as a primary source of cellulose with the aim of discovering resources to generate cellulose nanofibers (CNF). The SM was put through a soda pulping process to purify the cellulose, and then, the fiber was treated with an enzymatic treatment. Then, a twin-screw extruder and/or masuko were utilized to help with fiber delamination during the nanofibrillation process. After the enzymatic treatment, the twin-screw extruder and masuko treatment give a yield of 49.6 and 50.2%, respectively. The optical and atomic force microscopy, morfi, and polymerization degrees of prepared cellulosic materials were established. The pulp fibers, collected following each treatment stage, demonstrated that fiber characteristics such as length and crystallinity varied according to the used treatment (mechanical or enzymatic treatment). Obviously, the enzymic treatment resulted in shorter fibers and an increased degree of polymerization. However, the CNF obtained after enzymatic and extrusion treatment was achieved, and it gave 19 nm as the arithmetic width and a Young's modulus of 8.63 GPa.
Collapse
Affiliation(s)
- Abir Razzak
- Laboratory for the Application of Materials to the Environment, Water, and Energy (LR21ES15), Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
- Facultyof Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
| | - Ramzi Khiari
- Laboratory of Environmental Chemistry and Clean Process (LCE2P-LR21ES04), Faculty of Sciences of Monastir, University of Monastir, Monastir 5019, Tunisia
- Department of Textile, Higher Institute of Technological Studies (ISET) of Ksar-Hellal, Ksar-Hellal 5070, Tunisia
- University of Grenoble Alpes, CNRS, Grenoble INP, 38000 Grenoble, France
| | - Younes Moussaoui
- Facultyof Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax, University of Sfax, Sfax 3029, Tunisia
- Correspondence:
| | | |
Collapse
|
5
|
da Silva LS, Biondo MM, Feitosa BDA, Rocha ALF, Pinto CDC, Lima SX, Nogueira CDL, de Souza SM, Ruiz YL, Campelo PH, Sanches EA. Semiconducting nanocomposite based on the incorporation of polyaniline on the cellulose extracted from Bambusa vulgaris: structural, thermal and electrical properties. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|