1
|
Patloková K, Pokluda R. Optimization of Plant Nutrition in Aquaponics: The Impact of Trichoderma harzianum and Bacillus mojavensis on Lettuce and Basil Yield and Mineral Status. PLANTS (BASEL, SWITZERLAND) 2024; 13:291. [PMID: 38256844 PMCID: PMC10821075 DOI: 10.3390/plants13020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
The present study aims to test the effect of a nutrient solution, with the addition of microbial inoculum, on the growth and mineral composition of 'Hilbert' and 'Barlach' lettuce cultivars (Lactuca sativa var. crispa, L.) and basil (Ocimum basilicum, L.) cultivated in a vertical indoor farm. These crops were grown in four different variants of nutrient solution: (1) hydroponic; (2) aquaponic, derived from a recirculating aquaculture system (RAS) with rainbow trout; (3) aquaponic, treated with Trichoderma harzianum; (4) aquaponic, treated with Bacillus mojavensis. The benefits of T. harzianum inoculation were most evident in basil, where a significantly higher number of leaves (by 44.9%), a higher nitrate content (by 36.4%), and increased vitamin C (by 126.0%) were found when compared to the aquaponic variant. Inoculation with T. harzianum can be recommended for growing basil in N-limited conditions. B. mojavensis caused a higher degree of removal of Na+ and Cl- from the nutrient solution (243.1% and 254.4% higher, in comparison to the aquaponic solution). This is desirable in aquaponics as these ions may accumulate in the system solution. B. mojavensis further increased the number of leaves in all crops (by 44.9-82.9%) and the content of vitamin C in basil and 'Hilbert' lettuce (by 168.3 and 45.0%) compared to the aquaponic solution. The inoculums of both microbial species used did not significantly affect the crop yield or the activity of the biofilter. The nutrient levels in RAS-based nutrient solutions are mostly suboptimal or in a form that is unavailable to the plants; thus, their utilization must be maximized. These findings can help to reduce the required level of supplemental mineral fertilizers in aquaponics.
Collapse
Affiliation(s)
- Kateřina Patloková
- Department of Vegetable Sciences and Floriculture, Mendel University in Brno, 69144 Lednice, Czech Republic;
| | | |
Collapse
|
2
|
Abdel Z, Abdeliyev B, Yessimseit D, Begimbayeva E, Mussagalieva R. Natural foci of plague in Kazakhstan in the space-time continuum. Comp Immunol Microbiol Infect Dis 2023; 100:102025. [PMID: 37523875 DOI: 10.1016/j.cimid.2023.102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023]
Abstract
The relevance of the problem of the stated topic lies in the fact that the causative agent of the plague infection demonstrates high survival while maintaining high virulence in the territories, which are enzootic in terms of the plague. The study aimed to investigate the geographic distribution and genetic diversity of the plague pathogen in endemic regions through molecular genetic research. The work included the results of laboratory studies of 3058 samples, including soil - 1154, burrow substrates - 549, the contents of the feeding chamber - 349, bone remains - 18, biological objects - 988 samples of sera and suspensions from carriers and vectors of plague infection collected from 14 autonomous plague foci of Kazakhstan for the period 2021-2022. The leading method in the study was a laboratory experiment, thanks to which, using a new advanced technology on a microbiological analyser VITEK 2 COMPACT 30, it was possible to study pathogenic and non-pathogenic strains of the genus Yersinia isolated during field experiment. As a result of experimental work, it was shown that during a long inter-epizootic period, the plague pathogen can persist in the soil in symbiosis with soil microorganisms, and in this area, it chooses soil with a low-quality index of 10 points, where soils with a low total microbial number and species landscape prevail.
Collapse
Affiliation(s)
- Ziyat Abdel
- Laboratory of Plague, Masgut Aikimbayev National Scientific Center for Especially Dangerous Infections of the Ministry of Healthcare of the Republic of Kazakhstan, Almaty, Republic of Kazakhstan
| | - Beck Abdeliyev
- Department of Express Diagnostics and Indication of Especially Dangerous Infections, Masgut Aikimbayev National Scientific Center for Especially Dangerous Infections of the Ministry of Healthcare of the Republic of Kazakhstan, Almaty, Republic of Kazakhstan.
| | - Duman Yessimseit
- Department of Express Diagnostics and Indication of Especially Dangerous Infections, Masgut Aikimbayev National Scientific Center for Especially Dangerous Infections of the Ministry of Healthcare of the Republic of Kazakhstan, Almaty, Republic of Kazakhstan
| | - Elmira Begimbayeva
- Department of the National and Working Collection of Microorganisms, Masgut Aikimbayev National Scientific Center for Especially Dangerous Infections of the Ministry of Healthcare of the Republic of Kazakhstan, Almaty, Republic of Kazakhstan
| | - Raikhan Mussagalieva
- Department of Organizational, Advisory and Methodological Work, Masgut Aikimbayev National Scientific Center for Especially Dangerous Infections of the Ministry of Healthcare of the Republic of Kazakhstan, Almaty, Republic of Kazakhstan
| |
Collapse
|
3
|
Effects of Phenotypic Variation on Biological Properties of Endophytic Bacteria Bacillus mojavensis PS17. BIOLOGY 2022; 11:biology11091305. [PMID: 36138785 PMCID: PMC9495571 DOI: 10.3390/biology11091305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary Microorganisms play an important role in agriculture by protecting and stimulating the growth of plants. The phenotypic activities of microbial biological agents (MBA) can change under different environmental conditions. However, to adapt to these harsh conditions, genetic mutations take place in bacteria that are seen phenotypically, which might not be beneficial or less beneficial to the plants. Some adaptative mechanisms used by microorganisms, especially bacteria, to face these environmental factors lead to the appearance of subpopulations with different morphotypes that may be more adapted to survive in stressful conditions. Moreover, in favorable conditions, these subpopulations may become dominant among the overall bacterial population. In this study, Bacillus mojavensis undergoes phase variation when grown in a minimal medium, in which two colonies, opaque (morphotype I) and translucent (morphotype II), were generated. The characteristics of the generated morphotypes were determined and compared with those of their original strain. Overall, the results obtained showed that the phenotypic characteristics of morphotype I statistically differed from morphotype II. This phenomenon may be one of the factors behind the dissimilarities in the results between the laboratory and field data on the application of MBA. Abstract The use of microorganism-based products in agricultural practices is gaining more interest as an alternative to chemical methods due to their non-toxic bactericidal and fungicidal properties. Various factors influence the efficacy of the microorganisms used as biological control agents in infield conditions as compared to laboratory conditions due to ecological and physiological aspects. Abiotic factors have been shown to trigger phase variations in bacterial microorganisms as a mechanism for adapting to hostile environments. In this study, we investigated the stability of the morphotype and the effects of phenotypic variation on the biological properties of Bacillus mojavensis strain PS17. B. mojavensis PS17 generated two variants (opaque and translucent) that were given the names morphotype I and II, respectively. The partial sequence of the 16S rRNA gene revealed that both morphotypes belonged to B. mojavensis. BOX and ERIC fingerprinting PCR also showed the same DNA profiles in both morphotypes. The characteristics of morphotype I did not differ from the original strain, while morphotype II showed a lower hydrolytic enzyme activity, phytohormone production, and antagonistic ability against phytopathogenic fungi. Both morphotypes demonstrated endophytic ability in tomato plants. A low growth rate of the strain PS17(II) in a minimal medium was observed in comparison to the PS17(I) strain. Furthermore, the capacity for biocontrol of B. mojavensis PS17(II) was not effective in the suppression of root rot disease in the tomato plants caused by Fusarium oxysporum f. sp. radices-lycopersici stain ZUM2407, compared to B. mojavensis PS17(I), whose inhibition was almost 47.9 ± 1.03% effective.
Collapse
|
4
|
Co-Inoculation of Bacillus spp. for Growth Promotion and Iron Fortification in Sorghum. SUSTAINABILITY 2021. [DOI: 10.3390/su132112091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Seven Bacillus spp. isolated from the marine water and the rhizosphere of the medicinal plant Coscinium fenestratum were studied to produce plant growth promotion (PGP) traits invitro. Among the seven isolates, MMRH22 and RHPR20 produced copious amounts of PGP traits. Based on the 16S rRNA sequence, the two potent bacterial isolates, RHPR20 and MMRH22, were identified as Bacillus mojavensis and Bacillus cereus, respectively. A compatibility test between the isolates RHPR20 and MMRH22 revealed they are compatible and can be used as a consortium. Both isolates were evaluated for the plant growth promotion and the biofortification of sorghum under greenhouse conditions. Treatments included the application of MMRH22, RHPR20, their consortium (RHPR20 + MMRH22), and an uninoculated control. Inoculation with bacterial cultures resulted in a significant increase in the plant height; the number of leaves; the leaf area; the root, shoot, and leaf weight; and the yield of sorghum at 30 and 60 days after sowing (DAS). The scanning electron micrograph of the sorghum plant roots revealed extensive colonization in the plants treated with the bacterial cultures compared to the uninoculated control. The sorghum grains obtained after final harvest were analyzed for their nutrient content by ICP–OES. The biofortification in sorghum grains was varied and was found to enhance the iron content up to 97%. This study revealed that treatments with microbial consortia enhance plant growth, yield, and iron content, which could combat nutrient deficiencies in plants and humans.
Collapse
|
5
|
Plant Tolerance to Drought Stress in the Presence of Supporting Bacteria and Fungi: An Efficient Strategy in Horticulture. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7100390] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing temperature leads to intensive water evaporation, contributing to global warming and consequently leading to drought stress. These events are likely to trigger modifications in plant physiology and microbial functioning due to the altered availability of nutrients. Plants exposed to drought have developed different strategies to cope with stress by morphological, physiological, anatomical, and biochemical responses. First, visible changes influence plant biomass and consequently limit the yield of crops. The presented review was undertaken to discuss the impact of climate change with respect to drought stress and its impact on the performance of plants inoculated with plant growth-promoting microorganisms (PGPM). The main challenge for optimal performance of horticultural plants is the application of selected, beneficial microorganisms which actively support plants during drought stress. The most frequently described biochemical mechanisms for plant protection against drought by microorganisms are the production of phytohormones, antioxidants and xeroprotectants, and the induction of plant resistance. Rhizospheric or plant surface-colonizing (rhizoplane) and interior (endophytic) bacteria and fungi appear to be a suitable alternative for drought-stress management. Application of various biopreparations containing PGPM seems to provide hope for a relatively cheap, easy to apply and efficient way of alleviating drought stress in plants, with implications in productivity and food condition.
Collapse
|
6
|
Soni R, Keharia H. Phytostimulation and biocontrol potential of Gram-positive endospore-forming Bacilli. PLANTA 2021; 254:49. [PMID: 34383174 DOI: 10.1007/s00425-021-03695-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The spore-forming Bacillus and Paenibacillus species represent the phyla of beneficial bacteria for application as agricultural inputs in form of effective phytostimulators, biofertilizers, and biocontrol agents. The members of the genera Bacillus and Paenibacillus isolated from several ecological habitats are been thoroughly dissected for their effective application in the development of sustainable and eco-friendly agriculture. Numerous Bacillus and Paenibacillus species are reported as plant growth-promoting bacteria influencing the health and productivity of the food crops. This review narrates the mechanisms utilized by these species to enhance bioavailability and/or facilitate the acquisition of nutrients by the host plant, modulate plant hormones, stimulate host defense and stress resistance mechanisms, exert antagonistic action against soil and airborne pathogens, and alleviate the plant health. The mechanisms employed by Bacillus and Paenibacillus are seldom mutually exclusive. The comprehensive and systematic exploration of the aforementioned mechanisms in conjunction with the field investigations may assist in the exploration and selection of an effective biofertilizer and a biocontrol agent. This review aims to gather and discuss the literature citing the applications of Bacillus and Paenibacillus in the management of sustainable agriculture.
Collapse
Affiliation(s)
- Riteshri Soni
- Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat, 388 315, India
| | - Hareshkumar Keharia
- Department of Biosciences, UGC Centre of Advanced Study, Sardar Patel University, Satellite Campus, Vadtal Road, Bakrol, Anand, Gujarat, 388 315, India.
| |
Collapse
|
7
|
Kaul S, Choudhary M, Gupta S, Dhar MK. Engineering Host Microbiome for Crop Improvement and Sustainable Agriculture. Front Microbiol 2021; 12:635917. [PMID: 34122359 PMCID: PMC8193672 DOI: 10.3389/fmicb.2021.635917] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/16/2021] [Indexed: 12/27/2022] Open
Abstract
Dynamic consortium of microbial communities (bacteria, fungi, protists, viruses, and nematodes) colonizing multiple tissue types and coevolving conclusively with the host plant is designated as a plant microbiome. The interplay between plant and its microbial mutualists supports several agronomic functions, establishing its crucial role in plant beneficial activities. Deeper functional and mechanistic understanding of plant-microbial ecosystems will render many "ecosystem services" by emulating symbiotic interactions between plants, soil, and microbes for enhanced productivity and sustainability. Therefore, microbiome engineering represents an emerging biotechnological tool to directly add, remove, or modify properties of microbial communities for higher specificity and efficacy. The main goal of microbiome engineering is enhancement of plant functions such as biotic/abiotic stresses, plant fitness and productivities, etc. Various ecological-, biochemical-, and molecular-based approaches have come up as a new paradigm for disentangling many microbiome-based agromanagement hurdles. Furthermore, multidisciplinary approaches provide a predictive framework in achieving a reliable and sustainably engineered plant-microbiome for stress physiology, nutrient recycling, and high-yielding disease-resistant genotypes.
Collapse
Affiliation(s)
- Sanjana Kaul
- School of Biotechnology, University of Jammu, Jammu, India
| | | | - Suruchi Gupta
- School of Biotechnology, University of Jammu, Jammu, India
| | - Manoj K Dhar
- School of Biotechnology, University of Jammu, Jammu, India
| |
Collapse
|
8
|
Ezrari S, Mhidra O, Radouane N, Tahiri A, Polizzi G, Lazraq A, Lahlali R. Potential Role of Rhizobacteria Isolated from Citrus Rhizosphere for Biological Control of Citrus Dry Root Rot. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10050872. [PMID: 33926049 PMCID: PMC8145030 DOI: 10.3390/plants10050872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Citrus trees face threats from several diseases that affect its production, in particular dry root rot (DRR). DRR is a multifactorial disease mainly attributed to Neocosmospora (Fusarium) solani and other several species of Neocosmospora and Fusarium spp. Nowadays, biological control holds a promising control strategy that showed its great potential as a reliable eco-friendly method for managing DRR disease. In the present study, antagonist rhizobacteria isolates were screened based on in vitro dual culture bioassay with N. solani. Out of 210 bacterial isolates collected from citrus rhizosphere, twenty isolates were selected and identified to the species level based on the 16S rRNA gene. Molecular identification based on 16S rRNA gene revealed nine species belonging to Bacillus, Stenotrophomonas, and Sphingobacterium genus. In addition, their possible mechanisms involved in biocontrol and plant growth promoting traits were also investigated. Results showed that pectinase, cellulose, and chitinase were produced by eighteen, sixteen, and eight bacterial isolates, respectively. All twenty isolates were able to produce amylase and protease, only four isolates produced hydrogen cyanide, fourteen isolates have solubilized tricalcium phosphate, and ten had the ability to produce indole-3-acetic acid (IAA). Surprisingly, antagonist bacteria differed substantially in their ability to produce antimicrobial substances such as bacillomycin (five isolates), iturin (ten isolates), fengycin (six isolates), surfactin (fourteen isolates), and bacteriocin (subtilosin A (six isolates)). Regarding the PGPR capabilities, an increase in the growth of the bacterial treated canola plants, used as a model plant, was observed. Interestingly, both bacterial isolates Bacillus subtilis K4-4 and GH3-8 appear to be more promising as biocontrol agents, since they completely suppressed the disease in greenhouse trials. Moreover, these antagonist bacteria could be used as bio-fertilizer for sustainable agriculture.
Collapse
Affiliation(s)
- Said Ezrari
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (S.E.); (O.M.); (N.R.); (A.T.)
- Laboratory of Functional Ecology and Engineering Environment, Department of Biology, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco;
| | - Oumayma Mhidra
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (S.E.); (O.M.); (N.R.); (A.T.)
| | - Nabil Radouane
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (S.E.); (O.M.); (N.R.); (A.T.)
- Laboratory of Functional Ecology and Engineering Environment, Department of Biology, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco;
| | - Abdessalem Tahiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (S.E.); (O.M.); (N.R.); (A.T.)
| | - Giancarlo Polizzi
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia Vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Abderrahim Lazraq
- Laboratory of Functional Ecology and Engineering Environment, Department of Biology, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30000, Morocco;
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknès 50001, Morocco; (S.E.); (O.M.); (N.R.); (A.T.)
| |
Collapse
|