1
|
Dessì F, Varoni MV, Baralla E, Nieddu M, Pasciu V, Piras G, Lorenzoni G, Demontis MP. Contaminants of Emerging Concern: Antibiotics Research in Mussels from the Coasts of the Tyrrhenian Sea (Sardinia, Italy). Animals (Basel) 2024; 14:1205. [PMID: 38672353 PMCID: PMC11047641 DOI: 10.3390/ani14081205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Contaminants of emerging concern (CECs) are compounds found in several environmental compartments whose ubiquitous presence can cause toxicity for the entire ecosystem. Several personal care products, including antibiotics, have entered this group of compounds, constituting a major global threat. It is essential to develop simple and reliable methods by which to quantify these contaminants in several matrices. In this work, mussels were chosen as sentinel organisms to assess environmental pollution and the safety of bivalve mollusk consumption according to the "One Health perspective". A liquid chromatographic tandem mass spectrometry method (LC-MS/MS) was developed for the quantification of two macrolides, erythromycin (ERY) and azithromycin (AZI), in mussels. This new method was validated according to international guidelines, showing high selectivity, good recoveries (>60% for both of them), sensitivity, and precision. The method was successfully applied for ERY and AZI research in mussels farmed along the Sardinian coasts (Italy), demonstrating itself to be useful for routine analysis by competent authorities. The tested macrolides were not determined in the analyzed sites at concentrations above the limits of detection (LODs). These results demonstrate the food safety of mussels (as concerns the studied antibiotics) and a negligible amount of pollution derived from these drugs in the studied area.
Collapse
Affiliation(s)
- Filomena Dessì
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.D.); (M.V.V.); (V.P.); (M.P.D.)
| | - Maria Vittoria Varoni
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.D.); (M.V.V.); (V.P.); (M.P.D.)
| | - Elena Baralla
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.D.); (M.V.V.); (V.P.); (M.P.D.)
| | - Maria Nieddu
- Department of Medicine Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy;
| | - Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.D.); (M.V.V.); (V.P.); (M.P.D.)
| | - Gabriella Piras
- Veterinary Public Health Institute of Sardinia, 07100 Sassari, Italy; (G.P.); (G.L.)
| | - Giuseppa Lorenzoni
- Veterinary Public Health Institute of Sardinia, 07100 Sassari, Italy; (G.P.); (G.L.)
| | - Maria Piera Demontis
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (F.D.); (M.V.V.); (V.P.); (M.P.D.)
| |
Collapse
|
2
|
Salis S, Rubattu N, Rubattu F, Cossu M, Sanna A, Chessa G. Analytical Approaches in Official Food Safety Control: An LC-Orbitrap-HRMS Screening Method for the Multiresidue Determination of Antibiotics in Cow, Sheep, and Goat Milk. Molecules 2022; 27:molecules27196162. [PMID: 36234695 PMCID: PMC9572936 DOI: 10.3390/molecules27196162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The presence of unauthorized substances, such as residues of veterinary medicines or chemical contaminants, in food can represent a possible health concern. For this reason, a complete legislative framework has been established in the European Union (EU), which defines the maximum limits allowed in food and carries out surveillance programs to control the presence of these substances. Official food control laboratories, in order to ensure a high level of consumer protection, must respond to the challenge of improving and harmonizing the performance of the analytical methods used for the analysis of residues of authorized, unauthorized, or prohibited pharmacologically active substances. Laboratories must also consider the state of the art of the analytical methodologies and the performance requirements of current legislation. The aim of this work was to develop a multiresidue method for the determination of antibiotics in milk, compliant with the criteria and procedures established by Commission Implementing Regulation (EU) 2021/808. The method uses an LC-Orbitrap-HRMS for the determination of 57 molecules of antibiotic and active antibacterial substances belonging to different chemical classes (beta-lactams, tetracyclines, sulfonamides, quinolones, pleuromutilins, macrolides, and lincosamides) in bovine, ovine, and goat milk samples. It provides a simple and quick sample pretreatment and a subsequent identification phase of analytes, at concentrations equal to or lower than the maximum residual limit (MRL), in compliance with Commission Regulation (EU) 2010/37. The validation parameters: selectivity, stability, applicability, and detection capability (ccβ), are in agreement with the requirements of Commission Implementing Regulation (EU) 2021/808 and demonstrated the effectiveness of the method in detecting veterinary drug residues at the target screening concentration (at the MRL level or below), with a false positive rate of less than 5%. This method represents an effective solution for detecting antibiotics in milk, which can be successfully applied in routine analyses for official food control plans.
Collapse
|
3
|
A Universal LC-MS/MS Method for Simultaneous Detection of Antibiotic Residues in Animal and Environmental Samples. Antibiotics (Basel) 2022; 11:antibiotics11070845. [PMID: 35884099 PMCID: PMC9311993 DOI: 10.3390/antibiotics11070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
Detecting and monitoring the usage of antibiotics is a critical aspect of efforts to combat antimicrobial resistance. Antibiotic residue testing with existing LC-MS/MS methods is limited in detection range. Current methods also lack the capacity to detect multiple antibiotic residues in different samples simultaneously. In this study, we demonstrate a methodology that permits simultaneous extraction and detection of antibiotic residues in animal and environmental samples. A total of 30 different antibiotics from 13 classes could be qualitatively detected with our methodology. Further study to reduce analytes’ matrix effect would allow for quantification of antibiotic residues.
Collapse
|
4
|
Calahorrano-Moreno MB, Ordoñez-Bailon JJ, Baquerizo-Crespo RJ, Dueñas-Rivadeneira AA, B. S. M. Montenegro MC, Rodríguez-Díaz JM. Contaminants in the cow's milk we consume? Pasteurization and other technologies in the elimination of contaminants. F1000Res 2022; 11:91. [PMID: 35186276 PMCID: PMC8822143 DOI: 10.12688/f1000research.108779.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Cow's milk is currently the most consumed product worldwide. However, due to various direct and indirect contamination sources, different chemical and microbiological contaminants have been found in cow's milk. This review details the main contaminants found in cow's milk, referring to the sources of contamination and their impact on human health. A comparative approach highlights the poor efficacy and effects of the pasteurization process with other methods used in the treatment of cow's milk. Despite pasteurization and related techniques being the most widely applied to date, they have not demonstrated efficacy in eliminating contaminants. New technologies have appeared as alternative treatments to pasteurization. However, in addition to causing physicochemical changes in the raw material, their efficacy is not total in eliminating chemical contaminants, suggesting the need for new research to find a solution that contributes to improving food safety.
Collapse
Affiliation(s)
- Micaela Belen Calahorrano-Moreno
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Jonathan Jerry Ordoñez-Bailon
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Ricardo José Baquerizo-Crespo
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | - Alex Alberto Dueñas-Rivadeneira
- Departamento de Procesos Agroindustriales, Facultad de Ciencias Zootécnicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| | | | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Manabí, 130104, Ecuador
| |
Collapse
|
5
|
Meklati FR, Panara A, Hadef A, Meribai A, Ben-Mahdi MH, Dasenaki ME, Thomaidis NS. Comparative Assessment of Antibiotic Residues Using Liquid Chromatography Coupled with Tandem Mass Spectrometry (LC-MS/MS) and a Rapid Screening Test in Raw Milk Collected from the North-Central Algerian Dairies. TOXICS 2022; 10:toxics10010019. [PMID: 35051061 PMCID: PMC8781432 DOI: 10.3390/toxics10010019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022]
Abstract
Antibiotic residues in milk are a major health threat for the consumer and a hazard to the dairy industry, causing significant economic losses. This study aims to assess the presence of antibiotic residues in raw milk comparatively by a rapid screening test (BetaStar® Combo) and Liquid Chromatography coupled with Tandem Mass Spectrometry (LC-MS/MS). A total of 445 samples were collected from 3 dairy companies of north-central Algeria (Algiers, Blida, Boumerdes), and they were rapidly screened for β-lactams and tetracyclines; 52 samples, comprising 34 positive tanker-truck milk and 18 negative bulk-tank milk were tested by LC-MS/MS, which revealed 90.4% were contaminated (n = 47) and 55.3% exceeded the Maximum Residue Limit (MRL). The β-lactams as parent compounds and their metabolites were the most frequently detected with maximum value for cloxacillin (1231 µg/kg) and penicillin G (2062 µg/kg). Under field condition, the false-positive results, particularly for tetracyclines, seems to be related to milk samples displaying extreme acidity values (≥19°D) or fat-level fluctuations (2.7 g/100 mL and 5.6–6.2 g/100 mL). Despite a relatively low prevalence (7.64%) of residues using the rapid test, the detection by LC-MS/MS of flumequine (52 µg/kg), cefaclor (maximum 220 µg/kg) and metabolites of β-lactams at high levels should lead to reflections on the control of their human and environmental toxicological effects.
Collapse
Affiliation(s)
- Fawzi Rostane Meklati
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques CRAPC, BP 384 Bou-Ismail, Tipaza 42004, Algeria;
- Laboratoire de Recherche «Santé et Productions Animales», Ecole Nationale Supérieure Vétérinaire ENSV, Rabie Bouchama, Oued-Smar, Algiers 16000, Algeria;
| | - Anthi Panara
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
| | - Ahmed Hadef
- Department of Veterinary Sciences, Faculty of Nature and Life Sciences, Chadli Bendjedid University of El Taref, PB 73, El-Taref 36000, Algeria;
- Laboratory of Development and Control of Hospital Pharmaceutical Preparations, Faculty of Medicine, Badji Mokhtar University of Annaba, Annaba 23000, Algeria
| | - Amel Meribai
- Laboratoire de Recherche en Technologie Alimentaire et Nutrition Humaine, Ecole Nationale Supérieure Agronomique, Algiers 16004, Algeria;
| | - Meriem H. Ben-Mahdi
- Laboratoire de Recherche «Santé et Productions Animales», Ecole Nationale Supérieure Vétérinaire ENSV, Rabie Bouchama, Oued-Smar, Algiers 16000, Algeria;
| | - Marilena E. Dasenaki
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece
- Correspondence: (M.E.D.); (N.S.T.)
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece;
- Correspondence: (M.E.D.); (N.S.T.)
| |
Collapse
|