1
|
Silva Maciel L, Hříbková M, Herodes K. Evaluation of in-house-built pipette-tip micro-solid-phase extraction devices for sample preparation in the analysis of amino compounds by liquid chromatography-tandem mass spectrometry. J Chromatogr A 2024; 1738:465480. [PMID: 39504703 DOI: 10.1016/j.chroma.2024.465480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Amino compounds are of significant interest in dietary, clinical, and quality control fields. Efficient extraction is crucial for comprehensive metabolomics, especially for amino acids and biogenic amines, but traditional solid-phase extraction (SPE) methods are costly and require large solvent volumes. Miniaturized SPE techniques, like pipette-tip micro-solid-phase extraction (PT-µ-SPE), offer promising alternatives by improving throughput and reducing solvent and sorbent usage. This study presents PT-µ-SPE for the screening and quantification of amino compounds in bee products, particularly honey. The method involves derivatization with diethyl ethoxymethylenemalonate (DEEMM) and analysis using liquid chromatography-triple quadrupole mass spectrometry. Silica-based SCX sorbents were effective for a broad range of amino compounds, while WCX sorbents were better for aliphatic amines. The method's extraction efficiency was assessed across sample loading, washing, and elution solution, with recovery rates of 70 - 120% in oat bran, sea buckthorn leaves, and honey extracts. Matrix effects were observed for four amino compounds in honey. Limits of detection (LoD) and quantification (LoQ) ranged from 0.37 to 57 µg L⁻¹ and 1.13 to 174 µg L⁻¹, respectively. Covering 48 amino compounds under different PT-µ-SPE conditions, this method has been applied to several samples, demonstrating accuracy, environmental sustainability, cost-effectiveness, portability, and versatility in amino compound analysis.
Collapse
Affiliation(s)
| | - Michaela Hříbková
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia; Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Charles University, Akademika Heyrovského 1203, Hradec Králové 50003, Czech Republic
| | - Koit Herodes
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| |
Collapse
|
2
|
Zhang T, Yu Y, Han S, Cong H, Kang C, Shen Y, Yu B. Preparation and application of UPLC silica microsphere stationary phase:A review. Adv Colloid Interface Sci 2024; 323:103070. [PMID: 38128378 DOI: 10.1016/j.cis.2023.103070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
In this review, microspheres for ultra-performance liquid chromatography (UPLC) were reviewed in accordance with the literature in recent years. As people's demands for chromatography are becoming more and more sophisticated, the preparation and application of UPLC stationary phases have become the focus of researchers in this field. This new analytical separation science not only maintains the practicality and principle of high-performance liquid chromatography (HPLC), but also improves the step function of chromatographic performance. The review presents the morphology of four types of sub-2 μm silica microspheres that have been used in UPLC, including non-porous silica microspheres (NPSMs), mesoporous silica microspheres (MPSMs), hollow silica microspheres (HSMs) and core-shell silica microspheres (CSSMs). The preparation, pore control and modification methods of different microspheres are introduced in the review, and then the applications of UPLC in drug analysis and separation, environmental monitoring, and separation of macromolecular proteins was presented. Finally, a brief overview of the existing challenges in the preparation of sub-2 μm microspheres, which required further research and development, was given.
Collapse
Affiliation(s)
- Tingyu Zhang
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yaru Yu
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Shuiquan Han
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China; Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Chuankui Kang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
3
|
Marengo A, Maciel LS, Cagliero C, Rubiolo P, Herodes K. Free Amino Acids and Biogenic Amines Profiling and Variation in Wild and Sub-Endemic Cardueae Species from Sardinia and Corse. PLANTS (BASEL, SWITZERLAND) 2023; 12:319. [PMID: 36679032 PMCID: PMC9864185 DOI: 10.3390/plants12020319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The cardueae are a common species in the Mediterranean area where they grow spontaneously and are traditionally employed as food and for health purposes. In this work, five Cardueae, including two sub-endemic species (four Carduus and three Ptilostemon casabonae (L.) Greuter samples from different locations) were collected from Sardinia and the Corse islands. All the considered plants are characteristic of the area, in particular the sub-endemic species C. cephalanthus and P. casabonae. This work aims to obtain, for the first time, the amino compounds profile (primary metabolites) of these little-studied species to detect for any similarities and differences among the different samples using statistical analyses. A recently developed method was employed, where diethyl ethoxymethylenemalonate (DEEMM) derivatives are detected in a neutral loss scan mode using high performance liquid chromatography in tandem with a mass spectrometry technique. In total, 42 amino compounds were detected, of which 33 were fully identified and semi-quantified. Overall, the results show that DEEMM-derivatized amino compounds are qualitatively similar among the considered samples. Nonetheless, a discrimination at the genus level is possible. This work adds more information regarding the phytochemical composition regarding the primary metabolites of the considered samples, their discriminations and the search for compounds with potential health benefits.
Collapse
Affiliation(s)
- Arianna Marengo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, 10125 Torino, Italy
| | | | - Cecilia Cagliero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, 10125 Torino, Italy
| | - Patrizia Rubiolo
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Via P. Giuria 9, 10125 Torino, Italy
| | - Koit Herodes
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| |
Collapse
|
4
|
A review of the currently developed analytical methods for the determination of biogenic amines in food products. Food Chem 2023; 398:133919. [DOI: 10.1016/j.foodchem.2022.133919] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/09/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022]
|
5
|
Amayreh M, Basheer C, Hassan A. Conductive Cloth-Assisted Electromediated Extraction for the Determination of Biogenic Amines from Beverages. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|