1
|
Bamouh Z, Tifrouin I, Elkarhat Z, Abid L, Fellahi S, Elharrak M. Pathogenicity and phylogenetic analysis of ovine contagious ecthyma virus isolated during a sheeppox outbreak in Morocco. Microb Pathog 2024; 197:107023. [PMID: 39423917 DOI: 10.1016/j.micpath.2024.107023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Contagious ecthyma (CE), also known as ORF is a highly contagious zoonotic viral skin disease that affects humans, sheep, goats and other domesticated and wild animals. As reported here-in, the objective of this study was to investigate a suspected outbreak of both sheeppox and ORF diseases in a sheep herd during the winter of 2020 in Northwest Morocco. The affected sheep showed nodules and proliferative scabby skin lesions around the mouth and hairless area of the body. Samples of skin crust were collected for virus identification and isolation. A virus was isolated in Vero cells, lamb testis and heart cells and the cytopathic effect was characterized by cells aggregation, ballooning, and detachment. Initially, the suspensions of skin crust were positive for sheeppox virus (SPPV) by PCR. Subsequent testing of the isolated virus from skin crust of affected animals indicated that the virus was SPPV-negative and ORFV-positive by PCR. Furthermore, nucleotide sequences of the B2L aligned with reference ORFV isolates for genetic analysis. Phylogenetic analyses results confirmed that the isolated virus was ORFV and that the virus was closely related to ORFV strains isolated in Sudan and Malaysia. In conclusion, this study is the first reported detection of ORFV in Morocco, and therefore, poses as an imminent threat to the health of humans, domestic and wild animals.
Collapse
Affiliation(s)
- Zohra Bamouh
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco; Hassan II Agronomic and Veterinary Institute, Rabat, Morocco.
| | - Ikram Tifrouin
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - Zouhair Elkarhat
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco; Physiopathology, Molecular Biology and Biotechnology Laboratory, Faculty of Sciences Ain Chock, University Hassan II, B.P 5366 Maarif, Casablanca, 20000, Morocco.
| | - Laila Abid
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| | - Siham Fellahi
- Hassan II Agronomic and Veterinary Institute, Rabat, Morocco.
| | - Mehdi Elharrak
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia, 28810, Morocco.
| |
Collapse
|
2
|
Shen Z, Liu B, Zhu Z, Du J, Zhou Z, Pan C, Chen Y, Yin C, Luo Y, Li H, Chen X. Construction of a Triple-Gene Deletion Mutant of Orf Virus and Evaluation of Its Safety, Immunogenicity and Protective Efficacy. Vaccines (Basel) 2023; 11:vaccines11050909. [PMID: 37243014 DOI: 10.3390/vaccines11050909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Contagious ecthyma is a zoonotic disease caused by the orf virus (ORFV). Since there is no specific therapeutic drug available, vaccine immunization is the main tool to prevent and control the disease. Previously, we have reported the construction of a double-gene deletion mutant of ORFV (rGS14ΔCBPΔGIF) and evaluated it as a vaccine candidate. Building on this previous work, the current study reports the construction of a new vaccine candidate, generated by deleting a third gene (gene 121) to generate ORFV rGS14ΔCBPΔGIFΔ121. The in vitro growth characteristics, as well as the in vivo safety, immunogenicity, and protective efficacy, were evaluated. RESULTS: There was a minor difference in viral replication and proliferation between ORFV rGS14ΔCBPΔGIFΔ121 and the other two strains. ORFV rGS14ΔCBPΔGIFΔ121 induced continuous differentiation of PBMC to CD4+T cells, CD8+T cells and CD80+CD86+ cells and caused mainly Th1-like cell-mediated immunity. By comparing the triple-gene deletion mutant with the parental strain and the double-gene deletion mutant, we found that the safety of both the triple-gene deletion mutant and the double-gene deletion mutant could reach 100% in goats, while the safety of parental virus was only 50% after continually observing immunized animals for 14 days. A virulent field strain of ORFV from an ORF scab was used in the challenge experiment by inoculating the virus to the hairless area of the inner thigh of immunized animals. The result showed that the immune protection rate of triple-gene deletion mutant, double-gene mutant, and the parental virus was 100%, 66.7%, and 28.6%, respectively. In conclusion, the safety, immunogenicity, and immune-protectivity of the triple-gene deletion mutant were greatly improved to 100%, making it an excellent vaccine candidate.
Collapse
Affiliation(s)
- Zhanning Shen
- Animal Science and Techology College, Beijing University of Agriculture, Beijing 102208, China
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Bo Liu
- China Institute of Veterinary Drug Control, Beijing 100081, China
- International Atomic Energy Agency, Vienna International Centre, P.O. Box 100, A-1400 Vienna, Austria
| | - Zhen Zhu
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Jige Du
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Zhiyu Zhou
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Chenfan Pan
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yong Chen
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Chunsheng Yin
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Yufeng Luo
- China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Huanrong Li
- Animal Science and Techology College, Beijing University of Agriculture, Beijing 102208, China
| | - Xiaoyun Chen
- China Institute of Veterinary Drug Control, Beijing 100081, China
| |
Collapse
|
3
|
Recent advances in diagnostic approaches for orf virus. Appl Microbiol Biotechnol 2023; 107:1515-1523. [PMID: 36723701 DOI: 10.1007/s00253-023-12412-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
Orf virus (ORFV), the prototype species of the Parapoxvirus genus, is an important zoonotic virus, causing great economic losses in livestock production. At present, there are no effective drugs for orf treatment. Therefore, it is crucial to develop accurate and rapid diagnostic approaches for ORFV. Over decades, various diagnostic methods have been established, including conventional methods such as virus isolation and electron microscopy; serological methods such as virus neutralization test (VNT), immunohistochemistry (IHC) assay, immunofluorescence assay (IFA), and enzyme-linked immunosorbent assay (ELISA); and molecular methods such as polymerase chain reaction (PCR), real-time PCR, loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), and recombinase-aided amplification (RAA) assay. This review provides an overview of currently available diagnostic approaches for ORFV and discusses their advantages and limitations and future perspectives, which would be significantly helpful for ORFV early diagnosis and surveillance to prevent outbreak of orf. KEY POINTS: • Orf virus emerged and reemerged in past years • Rapid and efficient diagnostic approaches are needed and critical for ORFV detection • Novel and sensitive diagnostic methods are required for ORFV detection.
Collapse
|
4
|
Zhu Z, Qu G, Du J, Wang C, Chen Y, Shen Z, Zhou Z, Yin C, Chen X. Construction and characterization of a contagious ecthyma virus double-gene deletion strain and evaluation of its potential as a live-attenuated vaccine in goat. Front Immunol 2022; 13:961287. [PMID: 36119021 PMCID: PMC9478544 DOI: 10.3389/fimmu.2022.961287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Contagious ecthyma is a highly contagious viral disease with zoonotic significance caused by orf virus (ORFV) that affects domestic, ruminants and humans. Live attenuated virus and attenuated tissue culture vaccines are widely used in the fight against ORFV, however, the conventional attenuated vaccine strains have many drawbacks. The aim of this project was to construct a promising contagious ecthyma vaccine strain with safety, high protection efficacy and accessibility by genetic manipulation to against the disease. Using a natural ORFV-GS14 strain as the parental virus, recombinant virus, rGS14-ΔCBP-ΔGIF, with double deletions in the genes encoding the chemokine binding protein (CBP) and granulocyte/macrophage colony-stimulating factor inhibitory factor (GIF) was generated and characterized in vitro and in vivo. Results showed that the growth kinetics curve of rGS14-ΔCBP-ΔGIF and parental virus was consistent, both reaching plateau phase at 48 h post infection, which indicated that the double deletion of cbp and gif genes had little impact on the replication properties of the recombinant virus in primary goat testis (PGT) cell cultures compared with the parental virus. The safety of the double gene-deleted virus was evaluated in lambs. The lambs were monitored for 21 days post infection of the recombinant virus and no ORFV associated symptoms were observed in 21 days post-infection except for slight fever and anorexia in 5 days post-infection, and all lambs inoculated with either recombinant virus or PBS exhibited no clinical signs. To assess the protection efficacy of the rGS14-ΔCBP-ΔGIF, groups of four lambs each were inoculated with rGS14-ΔCBP-ΔGIF, rGS14-ΔCBP, rGS14-ΔGIF or PBS and challenged by a wild type virulent ORFV strain that was isolated from proliferative scabby lesions tissues of infected goat at 21-day post-inoculation. During 14 days post-challenging, lambs inoculated with rGS14-ΔCBP-ΔGIF all remained healthy with unimmunized group all infected, while the single gene-deleted viruses only protected 40% to 50% animals. These results indicated that the double gene-deleted recombinant virus could provide complete protection against virulent ORFV challenging. In conclusion, the double gene-deleted recombinant virus strain, rGS14-ΔCBP-ΔGIF, would be a promising candidate vaccine strains with safety, high protection efficacy and availability.
Collapse
Affiliation(s)
- Zhen Zhu
- China Institute of Veterinary Drug Control, Beijing, China
| | - Guanggang Qu
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Jige Du
- China Institute of Veterinary Drug Control, Beijing, China
| | - Changjiang Wang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, China
| | - Yong Chen
- China Institute of Veterinary Drug Control, Beijing, China
| | - Zhanning Shen
- China Institute of Veterinary Drug Control, Beijing, China
| | - Zhiyu Zhou
- China Institute of Veterinary Drug Control, Beijing, China
| | - Chunsheng Yin
- China Institute of Veterinary Drug Control, Beijing, China
| | - Xiaoyun Chen
- China Institute of Veterinary Drug Control, Beijing, China
| |
Collapse
|
5
|
Bukar AM, Jesse FFA, Abdullah CAC, Noordin MM, Lawan Z, Mangga HK, Balakrishnan KN, Azmi MLM. Immunomodulatory Strategies for Parapoxvirus: Current Status and Future Approaches for the Development of Vaccines against Orf Virus Infection. Vaccines (Basel) 2021; 9:1341. [PMID: 34835272 PMCID: PMC8624149 DOI: 10.3390/vaccines9111341] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
Orf virus (ORFV), the prototype species of the parapoxvirus genus, is the causative agent of contagious ecthyma, an extremely devastating skin disease of sheep, goats, and humans that causes enormous economic losses in livestock production. ORFV is known for its ability to repeatedly infect both previously infected and vaccinated sheep due to several immunomodulatory genes encoded by the virus that temporarily suppress host immunity. Therefore, the development of novel, safe and effective vaccines against ORFV infection is an important priority. Although, the commercially licensed live-attenuated vaccines have provided partial protection against ORFV infections, the attenuated viruses have been associated with major safety concerns. In addition to safety issues, the persistent reinfection of vaccinated animals warrants the need to investigate several factors that may affect vaccine efficacy. Perhaps, the reason for the failure of the vaccine is due to the long-term adaptation of the virus in tissue culture. In recent years, the development of vaccines against ORFV infection has achieved great success due to technological advances in recombinant DNA technologies, which have opened a pathway for the development of vaccine candidates that elicit robust immunity. In this review, we present current knowledge on immune responses elicited by ORFV, with particular attention to the effects of the viral immunomodulators on the host immune system. We also discuss the implications of strain variation for the development of rational vaccines. Finally, the review will also aim to demonstrate future strategies for the development of safe and efficient vaccines against ORFV infections.
Collapse
Affiliation(s)
- Alhaji Modu Bukar
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
- Department of Science Laboratory Technology, School Agriculture and Applied Sciences, Ramat Polytechnic Maiduguri, Maiduguri 1070, Borno, Nigeria
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | | | - Mustapha M. Noordin
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Zaharaddeen Lawan
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Hassana Kyari Mangga
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Krishnan Nair Balakrishnan
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| | - Mohd-Lila Mohd Azmi
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (M.M.N.); (Z.L.); (H.K.M.); (K.N.B.)
| |
Collapse
|
6
|
Lacasta D, Reina R, Ruiz de Arcaute M, Ferrer LM, Benito AA, Tejedor MT, Echeverria I, Ruiz H, Martinez Cardenas S, Windsor PA. Effect of a Topical Formulation on Infective Viral Load in Lambs Naturally Infected with Orf Virus. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2021; 12:149-158. [PMID: 34136371 PMCID: PMC8200145 DOI: 10.2147/vmrr.s306355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/12/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Orf is a highly contagious eruptive viral disease of the skin and mucosa of sheep and goats. Although vaccination with live or attenuated orf virus is the preferred option for disease control, the vaccine is unavailable in many countries. Treatment of orf lesions involves standard hygiene and in numerous cases, management of presumptive secondary infections with antibiotics, increasing risks of antimicrobial resistance (AMR). The wound dressing formulation Tri-Solfen® containing two local anaesthetics (lignocaine and bupivacaine), adrenaline and an antiseptic (cetrimide) in a gel formulation was developed for pain relief in sheep undergoing surgical husbandry procedures in Australia. Recently, TS therapy was found to reduce suffering and enhance recovery in cattle and buffalo with oral and skin lesions due to foot-and-mouth disease (FMD) virus infection. It was noted that TS has a low pH and is potentially viricidal, potentially aiding disease control. METHODS One-month-old lambs (n=14), naturally infected with orf, were recruited from a farm during a natural outbreak of the disease. The animals were selected at the early stages of the infection and randomly divided into two cohorts: Group A (n=11) treated with the topical wound gel formulation (TS); and Group B (n=3) an untreated control group. Swabs were obtained before treatment (T0) and on days one (T1), 3 (T2) and 5 (T3) post-treatment, then submitted to direct DNA extraction with real-time PCR quantification, plus incubation with primary tissue cultures from ovine skin fibroblasts (OSF) and T-immortalized goat embryonic fibroblasts (TIGEF). RESULTS Although no significant differences were found in the clinical progression of the lesions and PCR quantification (p=0.722) between these small cohorts, there was a significant difference (p<0.05) in reduction in infective viral load between the groups when assessed in OSF cell cultures between T0 and T3. CONCLUSION These preliminary findings suggest that treatment of early stage lesions with this TS may reduce the infective viral load present in orf lesions.
Collapse
Affiliation(s)
- Delia Lacasta
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Veterinary Faculty of Zaragoza, Zaragoza, 50013, Spain
| | - Ramses Reina
- Instituto de Agrobiotecnología (CSIC-Gobierno de Navarra), Mutilva, 31192, Navarra, Spain
| | - Marta Ruiz de Arcaute
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Veterinary Faculty of Zaragoza, Zaragoza, 50013, Spain
| | - Luis Miguel Ferrer
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Veterinary Faculty of Zaragoza, Zaragoza, 50013, Spain
| | | | - Maria Teresa Tejedor
- Anatomy, Embryology and Animal Genetics Department, CIBER CV (Universidad de Zaragoza-IIS), Veterinary Faculty of Zaragoza, Zaragoza, 50013, Spain
| | - Irache Echeverria
- Instituto de Agrobiotecnología (CSIC-Gobierno de Navarra), Mutilva, 31192, Navarra, Spain
| | - Hector Ruiz
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Veterinary Faculty of Zaragoza, Zaragoza, 50013, Spain
| | - Silvia Martinez Cardenas
- Animal Pathology Department, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Veterinary Faculty of Zaragoza, Zaragoza, 50013, Spain
| | - Peter Andrew Windsor
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia
| |
Collapse
|
7
|
Coradduzza E, Sanna D, Rocchigiani AM, Pintus D, Scarpa F, Scivoli R, Bechere R, Dettori MA, Montesu MA, Marras V, Lobrano R, Ligios C, Puggioni G. Molecular Insights into the Genetic Variability of ORF Virus in a Mediterranean Region (Sardinia, Italy). Life (Basel) 2021; 11:416. [PMID: 34064326 PMCID: PMC8147818 DOI: 10.3390/life11050416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 11/22/2022] Open
Abstract
Orf virus (ORFV) represents the causative agent of contagious ecthyma, clinically characterized by mild papular and pustular to severe proliferative lesions, mainly occurring in sheep and goats. In order to provide hints on the evolutionary history of this virus, we carried out a study aimed to assess the genetic variation of ORFV in Sardinia that hosts a large affected small ruminant population. We also found a high worldwide mutational viral evolutionary rate, which resulted, in turn, higher than the rate we detected for the strains isolated in Sardinia. In addition, a well-supported genetic divergence was found between the viral strains isolated from sheep and those from goats, but no relevant connection was evidenced between the severity of lesions produced by ORFV and specific polymorphic patterns in the two species of hosts. Such a finding suggests that ORFV infection-related lesions are not necessarily linked to the expression of one of the three genes here analyzed and could rather be the effect of the expression of other genes or rather represents a multifactorial character.
Collapse
Affiliation(s)
- Elisabetta Coradduzza
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (D.P.); (R.S.); (R.B.); (M.A.D.); (C.L.); (G.P.)
| | - Daria Sanna
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy
| | - Angela M. Rocchigiani
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (D.P.); (R.S.); (R.B.); (M.A.D.); (C.L.); (G.P.)
| | - Davide Pintus
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (D.P.); (R.S.); (R.B.); (M.A.D.); (C.L.); (G.P.)
| | - Fabio Scarpa
- Dipartimento di Medicina Veterinaria, Università di Sassari, 07100 Sassari, Italy;
| | - Rosario Scivoli
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (D.P.); (R.S.); (R.B.); (M.A.D.); (C.L.); (G.P.)
| | - Roberto Bechere
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (D.P.); (R.S.); (R.B.); (M.A.D.); (C.L.); (G.P.)
| | - Maria A. Dettori
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (D.P.); (R.S.); (R.B.); (M.A.D.); (C.L.); (G.P.)
| | - Maria A. Montesu
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, 07100 Sassari, Italy; (M.A.M.); (V.M.); (R.L.)
| | - Vincenzo Marras
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, 07100 Sassari, Italy; (M.A.M.); (V.M.); (R.L.)
| | - Renato Lobrano
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, 07100 Sassari, Italy; (M.A.M.); (V.M.); (R.L.)
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (D.P.); (R.S.); (R.B.); (M.A.D.); (C.L.); (G.P.)
| | - Giantonella Puggioni
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (E.C.); (A.M.R.); (D.P.); (R.S.); (R.B.); (M.A.D.); (C.L.); (G.P.)
| |
Collapse
|
8
|
Struzik J, Szulc-Dąbrowska L. NF-κB as an Important Factor in Optimizing Poxvirus-Based Vaccines against Viral Infections. Pathogens 2020; 9:pathogens9121001. [PMID: 33260450 PMCID: PMC7760304 DOI: 10.3390/pathogens9121001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Poxviruses are large dsDNA viruses that are regarded as good candidates for vaccine vectors. Because the members of the Poxviridae family encode numerous immunomodulatory proteins in their genomes, it is necessary to carry out certain modifications in poxviral candidates for vaccine vectors to improve the vaccine. Currently, several poxvirus-based vaccines targeted at viral infections are under development. One of the important aspects of the influence of poxviruses on the immune system is that they encode a large array of inhibitors of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which is the key element of both innate and adaptive immunity. Importantly, the NF-κB transcription factor induces the mechanisms associated with adaptive immunological memory involving the activation of effector and memory T cells upon vaccination. Since poxviruses encode various NF-κB inhibitor proteins, before the use of poxviral vaccine vectors, modifications that influence NF-κB activation and consequently affect the immunogenicity of the vaccine should be carried out. This review focuses on NF-κB as an essential factor in the optimization of poxviral vaccines against viral infections.
Collapse
|