1
|
Araoz M, Grillo-Puertas M, de Moreno de LeBlanc A, Hebert EM, Villegas JM, Rapisarda VA. Inorganic phosphate modifies stationary phase fitness and metabolic pathways in Lactiplantibacillus paraplantarum CRL 1905. Front Microbiol 2024; 15:1343541. [PMID: 38476941 PMCID: PMC10927959 DOI: 10.3389/fmicb.2024.1343541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/19/2024] [Indexed: 03/14/2024] Open
Abstract
Inorganic phosphate (Pi) concentration modulates polyphosphate (polyP) levels in diverse bacteria, affecting their physiology and survival. Lactiplantibacillus paraplantarum CRL 1905 is a lactic acid bacterium isolated from quinoa sourdough with biotechnological potential as starter, for initiating fermentation processes in food, and as antimicrobial-producing organism. The aim of this work was to evaluate the influence of the environmental Pi concentration on different physiological and molecular aspects of the CRL 1905 strain. Cells grown in a chemically defined medium containing high Pi (CDM + P) maintained elevated polyP levels up to late stationary phase and showed an enhanced bacterial survival and tolerance to oxidative stress. In Pi sufficiency condition (CDM-P), cells were ~ 25% longer than those grown in CDM + P, presented membrane vesicles and a ~ 3-fold higher capacity to form biofilm. Proteomic analysis indicated that proteins involved in the "carbohydrate transport and metabolism" and "energy production and conversion" categories were up-regulated in high Pi stationary phase cells, implying an active metabolism in this condition. On the other hand, stress-related chaperones and enzymes involved in cell surface modification were up-regulated in the CDM-P medium. Our results provide new insights to understand the CRL 1905 adaptations in response to differential Pi conditions. The adjustment of environmental Pi concentration constitutes a simple strategy to improve the cellular fitness of L. paraplantarum CRL 1905, which would benefit its potential as a microbial cell factory.
Collapse
Affiliation(s)
- Mario Araoz
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica, “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, UNT, San Miguel de Tucumán, Argentina
| | - Mariana Grillo-Puertas
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica, “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, UNT, San Miguel de Tucumán, Argentina
| | | | - Elvira María Hebert
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Josefina María Villegas
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica, “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, UNT, San Miguel de Tucumán, Argentina
| | - Viviana Andrea Rapisarda
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica, “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, UNT, San Miguel de Tucumán, Argentina
| |
Collapse
|
2
|
Are Reactive Oxygen Species (ROS) the Main Mechanism by Which Copper Ion Treatment Degrades the DNA of Mycobacterium avium subsp. paratuberculosis Suspended in Milk? Microorganisms 2022; 10:microorganisms10112272. [DOI: 10.3390/microorganisms10112272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Mycobacterium avium subsp. paratuberculosis (MAP) is the causal agent of paratuberculosis. This pathogen is able to survive adverse environmental conditions, including the pasteurization process. Copper, a well-studied metal, is considered an important antibacterial tool, since it has been shown to inactivate even MAP in treated milk through unknown mechanisms. The aim of the present study is to show the effect of copper ions, and reactive oxygen species (ROS) generated in response to oxidative stress, on the damage to MAP DNA when exposed to a copper ion challenge in cow’s milk. Methodology: Spiked milk with different MAP bacterial loads was supplemented with blocking agents. These were either the copper chelators ethylenediaminetetraacetic acid (EDTA) and batocuproin (BCS) or the ROS quenchers D-mannitol, gallic acid and quercetin. The DNA protection, MAP viability and ROS production generated after exposure to a copper challenge were then measured. Results: In a bacterial load of 104 cells mL−1, blocking effects by both the copper chelators and all the ROS quenchers offered significant protection to MAP DNA. In a concentration of 102 cells mL−1, only D-mannitol and a mix of quenchers significantly protected the viability of the bacteria, and only at a concentration of 106 cells mL−1 was there a lower production of ROS when supplementing milk with gallic acid, quercetin and the mix of quenchers. Conclusion: Based on these findings, it may be concluded that MAP DNA damage can be attributed to the combined effect of the direct copper ions and ROS generated. Nevertheless, taking into account the antioxidant environment that milk provides, the direct effect of copper could play a prominent role.
Collapse
|
3
|
Lu Y, Xing S, He L, Li C, Wang X, Zeng X, Dai Y. Characterization, High-Density Fermentation, and the Production of a Directed Vat Set Starter of Lactobacilli Used in the Food Industry: A Review. Foods 2022; 11:3063. [PMID: 36230139 PMCID: PMC9563398 DOI: 10.3390/foods11193063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Lactobacilli have been widely concerned for decades. Bacteria of the genus Lactobacillus have been commonly employed in fermented food to improve the appearance, smell, and taste of food or prolong its shelf-life. They comprise 261 species (by March 2020) that are highly diverse at the phenotypic, ecological, and genotypic levels. Some Lactobacilli strains have been documented to be essential probiotics, which are defined as a group of living microorganisms that are beneficial to the health of the host when ingested in sufficiency. However, the characterization, high-density fermentation, and the production of a directed vat set (DVS) starter of Lactobacilli strains used in the food industry have not been systematically reported. This paper mainly focuses on reviewing Lactobacilli as functional starter cultures in the food industry, including different molecular techniques for identification at the species and strain levels, methods for evaluating Lactobacilli properties, enhancing their performance and improving the cell density of Lactobacilli, and the production techniques of DVS starter of Lactobacilli strains. Moreover, this review further discussed the existing problems and future development prospects of Lactobacilli in the food industry. The viability and stability of Lactobacilli in the food industry and gastrointestinal environment are critical challenges at the industrial scale. The new production equipment and technology of DVS starter of Lactobacilli strains will have the potential for large-scale application, for example, developing low-temperature spray drying, freezing granulation drying, and spray freeze-drying.
Collapse
Affiliation(s)
- Yun Lu
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- Department of Brewing Engineering, Moutai University, Renhuai 564507, China
| | - Shuqi Xing
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Xiao Wang
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yifeng Dai
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Castro VMR, Luchese RH. Antidiabetogenic mechanisms of probiotic action in food matrices: A review. PHARMANUTRITION 2022. [DOI: 10.1016/j.phanu.2022.100302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Zaki MSA, El-Kott AF, AlGwaiz HIM, Sideeg AM, Andarawi M, Eid RA. The effectiveness of vitamin C on quinalphos ileal toxicity: a study of histological, ultrastructural, and oxidative stress markers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57896-57904. [PMID: 35359206 DOI: 10.1007/s11356-022-19820-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
There is a significant hazard of human exposure to the organophosphates which is a constant threat, and they are responsible for numerous cases of poisoning and mammalian toxicity annually in non-target wildlife. The antioxidants, including the vitamin C (Vit C), have a protective effect on some organophosphorus compounds-induced organ damage. Quinalphos (QP) is one of these compounds. The investigation's objective is to see if there was any effect of QP on the rat ileum which could be rectified by using Vit C. Three groups of 24 animals were created. As a control, the first group was given pure water. Second group subjected to oral gavages of QPs. Third group rats were given oral gavages of Vit C plus QPs for 10 days. The reaction of ileal enterocytes to food-borne QPs was marked by poorly organized microvilli, numerous vacuoles within them, disrupted nuclei with chromatin margination, disoriented mitochondria, and an expanded intercellular space. The absorptive columnar cell illustrated many vacuoles inside with herniation of microvilli, and normal goblet cells were also seen. Many Paneth cells towards the lumen of intestinal gland contained secretory granules of different sizes and shapes. The histological architecture of the ileal mucosa in the QP plus Vit C group was found to be close to those of healthy controls. The outcomes of this study suggest that administering Vit C in rats treated with QPs protects them from ill dysfunction caused by QP.
Collapse
Affiliation(s)
- Mohamed Samir Ahmed Zaki
- Department of Anatomy, College of Medicine, King Khalid University, P.O. 62529, Abha, Saudi Arabia.
- College of Medicine, Zagazig University, Zagazig, Egypt.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
- Department of Zoology, College of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Hussah I M AlGwaiz
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11474, Saudi Arabia
| | - Abulqasim M Sideeg
- Department of Anatomy, College of Medicine, King Khalid University, P.O. 62529, Abha, Saudi Arabia
| | - Mohamed Andarawi
- Department of Pathology, College of Medicine, King Khalid University, P.O. 62529, Abha, Saudi Arabia
| | - Refaat A Eid
- Department of Pathology, College of Medicine, King Khalid University, P.O. 62529, Abha, Saudi Arabia
| |
Collapse
|
6
|
Vitamin K in COVID-19—Potential Anti-COVID-19 Properties of Fermented Milk Fortified with Bee Honey as a Natural Source of Vitamin K and Probiotics. FERMENTATION 2021. [DOI: 10.3390/fermentation7040202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vitamin K deficiency is evident in severe and fatal COVID-19 patients. It is associated with the cytokine storm, thrombotic complications, multiple organ damage, and high mortality, suggesting a key role of vitamin K in the pathology of COVID-19. To support this view, we summarized findings reported from machine learning studies, molecular simulation, and human studies on the association between vitamin K and SARS-CoV-2. We also investigated the literature for the association between vitamin K antagonists (VKA) and the prognosis of COVID-19. In addition, we speculated that fermented milk fortified with bee honey as a natural source of vitamin K and probiotics may protect against COVID-19 and its severity. The results reported by several studies emphasize vitamin K deficiency in COVID-19 and related complications. However, the literature on the role of VKA and other oral anticoagulants in COVID-19 is controversial: some studies report reductions in (intensive care unit admission, mechanical ventilation, and mortality), others report no effect on mortality, while some studies report higher mortality among patients on chronic oral anticoagulants, including VKA. Supplementing fermented milk with honey increases milk peptides, bacterial vitamin K production, and compounds that act as potent antioxidants: phenols, sulforaphane, and metabolites of lactobacilli. Lactobacilli are probiotic bacteria that are suggested to interfere with various aspects of COVID-19 infection ranging from receptor binding to metabolic pathways involved in disease prognosis. Thus, fermented milk that contains natural honey may be a dietary manipulation capable of correcting nutritional and immune deficiencies that predispose to and aggravate COVID-19. Empirical studies are warranted to investigate the benefits of these compounds.
Collapse
|