1
|
Fiorentino MA, Acuña Y, Sosa E, Cantón GJ, Erreguerena I, Malena R, Mendez MA, Morrell EL, García JA. Infectious sporadic bovine abortions: retrospective analysis. Trop Anim Health Prod 2024; 56:63. [PMID: 38291289 DOI: 10.1007/s11250-024-03892-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Infectious sporadic abortions in cattle are mainly caused by opportunistic bacteria and fungi usually present in environmental or gastrointestinal and reproductive microbiota of healthy animals. A retrospective analysis was carried out to evaluate the main opportunistic microorganisms involved in bovine abortions recorded at INTA Balcarce (Argentina) from 1997 to 2023, accounting for 2.2% of the total diagnosed etiologies of bovine abortion. The opportunistic agents identified as the cause of abortion in 29 fetuses were bacteria (90%) and fungi (10%). Escherichia coli (n = 8), Trueperella pyogenes (n = 5), and Histophilus somni (n = 4) were the bacterial species most often identified as causing infectious abortions, whereas Aspergillus spp. (n = 3) was implicated in all fungal abortions identified. Pure culture of bacteria or fungus was achieved from abomasal content and/or lung essential. Main microscopic findings were bronchopneumonia, myo- and epicarditis, meningitis, and portal hepatitis. Herein, we highlight the importance of detecting potential infectious bacteria in cultures to improve etiological diagnosis of bovine abortions associated with compatible microscopic findings to confirm the etiology.
Collapse
Affiliation(s)
- María A Fiorentino
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Balcarce, Balcarce, Buenos Aires, Argentina.
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina.
| | - Yamila Acuña
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Balcarce, Balcarce, Buenos Aires, Argentina
| | - Emiliano Sosa
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Balcarce, Balcarce, Buenos Aires, Argentina
| | - Germán J Cantón
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Balcarce, Balcarce, Buenos Aires, Argentina
| | - Ignacio Erreguerena
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Balcarce, Balcarce, Buenos Aires, Argentina
| | - Rosana Malena
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Balcarce, Balcarce, Buenos Aires, Argentina
| | - María A Mendez
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Balcarce, Balcarce, Buenos Aires, Argentina
| | - Eleonora L Morrell
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Balcarce, Balcarce, Buenos Aires, Argentina
| | - Juan A García
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Balcarce, Balcarce, Buenos Aires, Argentina
| |
Collapse
|
2
|
Ma X, Liu Z, Yue C, Wang S, Li X, Wang C, Ling S, Wang Y, Liu S, Gu Y. High-throughput sequencing and characterization of potentially pathogenic fungi from the vaginal mycobiome of giant panda ( Ailuropoda melanoleuca) in estrus and non-estrus. Front Microbiol 2024; 15:1265829. [PMID: 38333585 PMCID: PMC10850575 DOI: 10.3389/fmicb.2024.1265829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Introduction The giant panda (Ailuropoda melanoleuca) reproduction is of worldwide attention, and the vaginal microbiome is one of the most important factors affecting the reproductive rate of giant pandas. The aim of this study is to investigate the diversity of vaginal mycobiota structure, and potential pathogenic fungi in female giant pandas during estrus and non-estrus. Methods This study combined with high-throughput sequencing and laboratory testing to compare the diversity of the vaginal mycobiota in giant pandas during estrus and non-estrus, and to investigate the presence of potentially pathogenic fungi. Potentially pathogenic fungi were studied in mice to explore their pathogenicity. Results and discussion The results revealed that during estrus, the vaginal secretions of giant pandas play a crucial role in fungal colonization. Moreover, the diversity of the vaginal mycobiota is reduced and specificity is enhanced. The abundance of Trichosporon and Cutaneotrichosporon in the vaginal mycobiota of giant pandas during estrus was significantly higher than that during non-estrus periods. Apiotrichum and Cutaneotrichosporon were considered the most important genera, and they primarily originate from the environment owing to marking behavior exhibited during the estrous period of giant pandas. Trichosporon is considered a resident mycobiota of the vagina and is an important pathogen that causes infection when immune system is suppressed. Potentially pathogenic fungi were further isolated and identified from the vaginal secretions of giant pandas during estrus, and seven strains of Apiotrichum (A. brassicae), one strain of Cutaneotrichosporon (C. moniliiforme), and nine strains of Trichosporon (two strains of T. asteroides, one strain of T. inkin, one strain of T. insectorum, and five strains of T. japonicum) were identified. Pathogenicity results showed that T. asteroides was the most pathogenic strain, as it is associated with extensive connective tissue replacement and inflammatory cell infiltration in both liver and kidney tissues. The results of this study improve our understanding of the diversity of the vaginal fungi present in giant pandas and will significantly contribute to improving the reproductive health of giant pandas in the future.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chanjuan Yue
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Siwen Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinni Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chengdong Wang
- China Conservation and Research Center for the Giant Panda, Chengdu, China
| | - Shanshan Ling
- China Conservation and Research Center for the Giant Panda, Chengdu, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Songrui Liu
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Polo C, García-Seco T, Díez-Guerrier A, Briones V, Domínguez L, Pérez-Sancho M. What about the bull? A systematic review about the role of males in bovine infectious infertility within cattle herds. Vet Anim Sci 2023; 19:100284. [PMID: 36647444 PMCID: PMC9840180 DOI: 10.1016/j.vas.2023.100284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Numerous pathogens affect cow fertility. Nevertheless, little information has been published about microorganisms associated with cattle infertility focusing on bulls. The present review offers a current analysis and highlights potential key aspects on the relevance of bulls in the emergence of infertility problems of infectious origin within herds that are still not completely determined. The present systematic review was conducted using the PubMed, Web of Science, and Scopus databases on December 9, 2022. In total, 2,224 bibliographic records were reviewed and, according to strict inclusion criteria, 38 articles were selected from 1966 to 2022, from which we ranked more than 27 different microorganisms (fungi were not identified). The most cited pathogens were BoHV (described by 26.3% of the papers), Campylobacter fetus (23.7%), Tritrichomonas foetus (18.4%), and BVDV, Ureaplasma spp., and Mycoplasma spp. (10.5% each). Despite the general trend towards an increasing number of publications about bull-infertility problems, a number of pathogens potentially transmitted through both natural breeding and seminal doses given to females and associated with infertility within herds were not ranked in the study (e.g., Chlamydia spp.). This work highlights i) the need to clearly establish the role of certain microorganisms not traditionally associated with reproductive problems in bull infertility (e.g., Staphylococcus spp. or BoHV-4) and ii) the need to perform additional studies on breeding bulls to clarify their role in infertility problems within herds. This would allow monitoring for pathogens that have gone unnoticed and those that are fastidious to diagnose and/or potentially transmitted to females.
Collapse
Affiliation(s)
- Coral Polo
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain,MAEVA SERVET S.L., Calle de la Fragua 3, 28749 Alameda del Valle, Madrid, Spain
| | - Teresa García-Seco
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Alberto Díez-Guerrier
- MAEVA SERVET S.L., Calle de la Fragua 3, 28749 Alameda del Valle, Madrid, Spain,Department of Animal Health, Veterinary Faculty, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Víctor Briones
- Department of Animal Health, Veterinary Faculty, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain,Department of Animal Health, Veterinary Faculty, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Marta Pérez-Sancho
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain,Department of Animal Health, Veterinary Faculty, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain,Corresponding author at: VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain.
| |
Collapse
|