Pimentel Arantes J, Dillis Faccin I, Coutinho EJ, Lima Cardoso CA, Lopes Fernandes SS, Rossato L, Simionatto E, Simionatto S. An approach to combat multidrug-resistant K. pneumoniae strain using synergistic effects of Ocotea diospyrifolia essential oil in combination with amikacin.
Microb Pathog 2024;
193:106782. [PMID:
38969186 DOI:
10.1016/j.micpath.2024.106782]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The natural antimicrobial properties of essential oils (EOs) have contributed to the battle against multidrug-resistant microorganisms by providing new ways to develop more effective antibiotic agents. In this study, we investigated the chemical composition of Ocotea diospyrifolia essential oil (OdOE) and its antimicrobial properties combined with amikacin (AMK). Through gas chromatography-mass spectrometry (GCMS) analysis, the primary constituents of OdOE were identified as α-bisabolol (45.8 %), β-bisabolene (9.4 %), γ-elemene (7.6 %), (Z)- β-farnesene (5.2 %), spathulenol (3.5 %), (Z)-caryophyllene (3.3 %), and (E)-caryophyllene (3.1 %). In vitro assessments showed that the combined administration of OdOE and AMK exerted a synergistic antibacterial effect on the multidrug-resistant K. pneumoniae strain. This synergistic effect demonstrated bacteriostatic action. OdEO combined with amikacin showed protein extravasation within 2 h of treatment, leading to bacterial death, which was determined by a reduction in viable cell count. The effective concentrations showed hemocompatibility. In vivo assessments using Caenorhabditis elegans as a model showed the survival of 85 % of infected nematodes. Therefore, the combination OdEO combined with amikacin exhibited antimicrobial activity against a multidrug-resistant K. pneumoniae strain. Thus, OdOE is a promising agent that may be considered for development of antimicrobial treatment.
Collapse