1
|
Bolan S, Wijesekara H, Ireshika A, Zhang T, Pu M, Petruzzelli G, Pedron F, Hou D, Wang L, Zhou S, Zhao H, Siddique KHM, Wang H, Rinklebe J, Kirkham MB, Bolan N. Tungsten contamination, behavior and remediation in complex environmental settings. ENVIRONMENT INTERNATIONAL 2023; 181:108276. [PMID: 39492254 DOI: 10.1016/j.envint.2023.108276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Tungsten (W) is a rare element and present in the earth's crust mainly as iron, aluminium, and calcium minerals including wolframite and scheelite. This review aims to offer an overview on the current knowledge on W pollution in complex environmental settlings, including terrestrial and aquatic ecosystems, linking to its natural and anthropogenic sources, behavior in soil and water, environmental and human health hazards, and remediation strategies. Tungsten is used in many alloys mainly as wafers, which have wide industrial applications, such as incandescent light bulb filaments, X-ray tubes, arc welding electrodes, radiation shielding, and industrial catalysts. The rigidity and high density of W enable it to be suitable for defence applications replacing lead. In soil, W metal is oxidised to the tungstate anion and occurs in oxidation states from - 2 to + 6, with the most prevalent oxidation state of + 6. However, recently, people have been alerted to the risk posed by W alloys and its particulates, which can cause cancer and have other detrimental health effects in animals and humans. The population is subject to W pollution in the workplace by breathing, ingestion, and dermal contact. Remediation of W-polluted soil and aquatic environments can be accomplished via stabilization or solubilization. Stabilization of W in soil and groundwater using immobilizing agents inhibits the bioavailability of W, thereby preventing the contaminant from reaching the food chain, while solubilization of W in soil involving mobilizing materials accelerates the elimination of W via soil washing and root absorption. Future research opportunities covering risk-based remediation of W pollution in these complex settings are presented.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Australia
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Achali Ireshika
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Mingjun Pu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Gianniantonio Petruzzelli
- Institute of Research on Terrestrial Ecosystem, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy
| | - Francesca Pedron
- Institute of Research on Terrestrial Ecosystem, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Sarah Zhou
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Hoachen Zhao
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, People's Republic of China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Australia.
| |
Collapse
|
2
|
Tu H, Chen D. Aerosol-assisted process to produce sodium tungsten bronze particles from aqueous solutions and effect of particle size on the NIR shielding performance. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
3
|
Gu C, Wang Z, Pan Y, Zhu S, Gu Z. Tungsten-based Nanomaterials in the Biomedical Field: A Bibliometric Analysis of Research Progress and Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204397. [PMID: 35906814 DOI: 10.1002/adma.202204397] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Tungsten-based nanomaterials (TNMs) with diverse nanostructures and unique physicochemical properties have been widely applied in the biomedical field. Although various reviews have described the application of TNMs in specific biomedical fields, there are still no comprehensive studies that summarize and analyze research trends of the field as a whole. To identify and further promote the development of biomedical TNMs, a bibliometric analysis method is used to analyze all relevant literature on this topic. First, general bibliometric distributions of the dataset by year, country, institute, referenced source, and research hotspots are recognized. Next, a comprehensive review of the subjectively recognized research hotspots in various biomedical fields, including biological sensing, anticancer treatments, antibacterials, and toxicity evaluation, is provided. Finally, the prospects and challenges of TNMs are discussed to provide a new perspective for further promoting their development in biomedical research.
Collapse
Affiliation(s)
- Chenglu Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqiang Wang
- School of Science, China University of Geosciences, Beijing, 100049, China
| | - Yawen Pan
- School of Science, China University of Geosciences, Beijing, 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Recent Advances in Ternary Metal Oxides Modified by N Atom for Photocatalysis. Catalysts 2022. [DOI: 10.3390/catal12121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ternary metal oxides (TMOs) with flexible band structures are of significant potential in the field of photocatalysis. The efficient utilization of renewable and green solar energy is of great importance to developing photocatalysts. To date, a wide range of TMOs systems has been developed as photocatalysts for water and air purification, but their practical applications in visible light-assisted chemical reactions are hindered mainly by its poor visible light absorption capacity. Introduction of N atoms into TMOs can narrow the band-gap energy to a lower value, enhance the absorption of visible light and suppress the recombination rate of photogenerated electrons and holes, thus improving the photocatalytic performance. This review summarizes the recent research on N-modified TMOs, including the influence of N doping amounts, N doping sites, and N-induced phase transformation. The introduced N greatly tuned the optical properties, electronic structure, and photocatalytic activity of the TMOs. The optimal N concentration and the influence of N doping sites are investigated. The substitutional N and interstitial N contributed differently to the band gap and electron transport. The introduced N can tune the vacancies in TMOs due to the charge compensation, which is vital for inducing different activity and selectivity. The topochemical ammonolysis process can convert TMOs to oxynitride with visible light absorption. By altering the band structures, these oxynitride materials showed enhanced photocatalytic activity. This review provides an overview of recent advances in N-doped TMOs and oxynitrides derived from TMOs as photocatalysts for environmental applications, as well as some relevant pointers for future burgeoning research development.
Collapse
|
5
|
Hui X, Wang L, Yao Z, Hao L, Sun Z. Recent progress of photocatalysts based on tungsten and related metals for nitrogen reduction to ammonia. Front Chem 2022; 10:978078. [PMID: 36072702 PMCID: PMC9441816 DOI: 10.3389/fchem.2022.978078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022] Open
Abstract
Photocatalytic nitrogen reduction reaction (NRR) to ammonia holds a great promise for substituting the traditional energy-intensive Haber–Bosch process, which entails sunlight as an inexhaustible resource and water as a hydrogen source under mild conditions. Remarkable progress has been achieved regarding the activation and solar conversion of N2 to NH3 with the rapid development of emerging photocatalysts, but it still suffers from low efficiency. A comprehensive review on photocatalysts covering tungsten and related metals as well as their broad ranges of alloys and compounds is lacking. This article aims to summarize recent advances in this regard, focusing on the strategies to enhance the photocatalytic performance of tungsten and related metal semiconductors for the NRR. The fundamentals of solar-to-NH3 photocatalysis, reaction pathways, and NH3 quantification methods are presented, and the concomitant challenges are also revealed. Finally, we cast insights into the future development of sustainable NH3 production, and highlight some potential directions for further research in this vibrant field.
Collapse
Affiliation(s)
| | | | | | | | - Zhenyu Sun
- *Correspondence: Leiduan Hao, ; Zhenyu Sun,
| |
Collapse
|
6
|
Cao J, Hasegawa T, Asakura Y, Sun P, Yang S, Li B, Cao W, Yin S. Synthesis and color tuning of titanium oxide inorganic pigment by phase control and mixed-anion co-doping. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Liu X, Guo Y, He H, Zheng L, Kong L. A comprehensive study of indole catalytic hydrodenitrogenation under hydrothermal conditions. AIChE J 2021. [DOI: 10.1002/aic.17531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xu Liu
- Key Laboratory of Thermo‐Fluid Science and Engineering, Ministry of Education School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an Shaanxi China
| | - Yang Guo
- Key Laboratory of Thermo‐Fluid Science and Engineering, Ministry of Education School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an Shaanxi China
| | - Haoran He
- Department of Chemical Engineering, Pennsylvania State University University Park Pennsylvania USA
| | - Lixiao Zheng
- Key Laboratory of Thermo‐Fluid Science and Engineering, Ministry of Education School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an Shaanxi China
| | - Lingzhao Kong
- CAS Key Laboratory of Low‐Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai China
| |
Collapse
|
8
|
Wang Z, Gu Z, Wang F, Hermawan A, Hirata S, Asakura Y, Hasegawa T, Zhu J, Inada M, Yin S. An ultra-sensitive room temperature toluene sensor based on molten-salts modified carbon nitride. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Enhanced visible-light-induced photocatalytic NOx degradation over (Ti,C)-BiOBr/Ti3C2Tx MXene nanocomposites: Role of Ti and C doping. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118815] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Fernandes N, Rodrigues CF, de Melo-Diogo D, Correia IJ, Moreira AF. Optimization of the GSH-Mediated Formation of Mesoporous Silica-Coated Gold Nanoclusters for NIR Light-Triggered Photothermal Applications. NANOMATERIALS 2021; 11:nano11081946. [PMID: 34443777 PMCID: PMC8401642 DOI: 10.3390/nano11081946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/16/2021] [Accepted: 07/25/2021] [Indexed: 12/26/2022]
Abstract
Cancer light-triggered hyperthermia mediated by nanomaterials aims to eliminate cancer cells by inducing localized temperature increases to values superior to 42 °C, upon irradiation with a laser. Among the different nanomaterials with photothermal capacity, the gold-based nanoparticles have been widely studied due to their structural plasticity and advantageous physicochemical properties. Herein, a novel and straightforward methodology was developed to produce gold nanoclusters coated with mesoporous silica (AuMSS), using glutathione (GSH) to mediate the formation of the gold clusters. The obtained results revealed that GSH is capable of triggering and control the aggregation of gold nanospheres, which enhanced the absorption of radiation in the NIR region of the spectra. Moreover, the produced AuMSS nanoclusters mediated a maximum temperature increase of 20 °C and were able to encapsulate a drug model (acridine orange). In addition, these AuMSS nanoclusters were also biocompatible with both healthy (fibroblasts) and carcinogenic (cervical cancer) cells, at a maximum tested concentration of 200 μg/mL. Nevertheless, the AuMSS nanoclusters’ NIR light-triggered heat generation successfully reduced the viability of cervical cancer cells by about 80%. This confirms the potential of the AuMSS nanoclusters to be applied in cancer therapy, namely as theragnostic agents.
Collapse
Affiliation(s)
- Natanael Fernandes
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (N.F.); (C.F.R.); (D.d.M.-D.); (I.J.C.)
| | - Carolina F. Rodrigues
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (N.F.); (C.F.R.); (D.d.M.-D.); (I.J.C.)
| | - Duarte de Melo-Diogo
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (N.F.); (C.F.R.); (D.d.M.-D.); (I.J.C.)
| | - Ilídio J. Correia
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (N.F.); (C.F.R.); (D.d.M.-D.); (I.J.C.)
- CIEPQPF—Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - André F. Moreira
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (N.F.); (C.F.R.); (D.d.M.-D.); (I.J.C.)
- Correspondence: ; Tel.: +351-275-329-002; Fax: +351-275-329-099
| |
Collapse
|
11
|
Otomo M, Hasegawa T, Asakura Y, Yin S. Remarkable Effects of Lanthanide Substitution for the Y-Site on the Oxygen Storage/Release Performance of YMnO 3+δ. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31691-31698. [PMID: 34185497 DOI: 10.1021/acsami.1c06880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lanthanide-substituted YMnO3+δ nanoparticles with the hexagonal phase, denoted as R0.25Y0.75MnO3+δ (R = Er, Dy, Tb, Gd, and Sm), have been successfully synthesized by the polymerized complex method. The substitutions did not largely affect the morphologies and specific surface area of the obtained R0.25Y0.75MnO3+δ nanoparticles. From the evaluation for the oxygen storage/release properties, the oxygen storage capacity (OSC) increased significantly by the Tb substitution, and the oxygen absorption/release rate strongly depended on the ion size of the substituted lanthanides. It was found that Tb4+ existed in Tb0.25Y0.75MnO3+δ after oxygen absorption, demonstrating that the remarkable increase in the OSC of the Tb-substituted sample was due to the oxidation of not only Mn3+ to Mn4+ but also Tb3+ to Tb4+. In addition, the unit cell volume increasing with the R ion size, which can lead to the promotion of the oxygen diffusion in the crystal structure, was the factor leading to the increase of the oxygen absorption rate. Especially, Sm0.25Y0.75MnO3+δ showed an excellent OSC of 3 + δ = 3.34 (the weight increase rate was 2.64 wt %) even under a rapid temperature swing rate of 20 °C/min.
Collapse
Affiliation(s)
- Mayu Otomo
- Institute of Multidisciplinary Research for Advances Materials (IMRAM), Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Takuya Hasegawa
- Institute of Multidisciplinary Research for Advances Materials (IMRAM), Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yusuke Asakura
- Institute of Multidisciplinary Research for Advances Materials (IMRAM), Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Shu Yin
- Institute of Multidisciplinary Research for Advances Materials (IMRAM), Tohoku University, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
12
|
Influence of Ce/Nb Molar Ratios on Oxygen-Rich CexNb1-xO4+δ Materials for Catalytic Combustion of VOCs in the Process of Polyether Polyol Synthesis. Catal Letters 2021. [DOI: 10.1007/s10562-021-03652-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
New Solids in As-O-Mo, As(P)-O-Mo(W) and As(P)-O-Nb(W) Systems That Exhibit Nonlinear Optical Properties. Molecules 2021; 26:molecules26051494. [PMID: 33803443 PMCID: PMC7967165 DOI: 10.3390/molecules26051494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Interactions between well-mixed fine powders of As2O3, P2O5, MoO3, WO3 and Nb2O5 at different stoichiometry in quartz ampoules under vacuum at ~1000 °C in the presence of metallic molybdenum (or niobium), over several weeks, led to shiny dichroic crystalline materials being formed in cooler parts of the reaction vessel. An addition of small quantities of metals-Mo or Nb-was made with the aim of partially reducing their highly oxidized Mo(VI), W(VI) or Nb(V) species to corresponding Mo(V), W(V) and Nb(IV) centers, in order to form mixed valence solids. Sublimed crystals of four new compounds were investigated using a variety of techniques, with prime emphasis on the X-ray analysis, followed by spectroscopy (diffusion reflectance, IR, Raman and EPR), second harmonic generation (SHG), thermal analysis under N2 and air atmosphere, and single crystals electrical conductivity studies. The results evidenced the formation of new complex solids of previously unknown compositions and structures. Three out of four compounds crystallized in non-centrosymmetric space groups and represent layered 2D polymeric puckered structures that being stacked on each other form 3D lattices. All new solids exhibit strong second-harmonic-generation (SHG effect; based on YAG 1064 nm tests with detection of 532 nm photons), and a rare photosalient effect when crystals physically move in the laser beam. Single crystals' electrical conductivity of the four new synthesized compounds was measured, and the results showed their semiconductor behavior. Values of band gaps of these new solids were determined using diffusion reflectance spectroscopy in the visible region. Aspects of new solids' practical usefulness are discussed.
Collapse
|
14
|
Yang G, Liang Y, Yang J, Wang K, Zeng Z, Xiong Z. Supporting ultrathin “fish scale-like” BiOBr nanosheets on Bi 6Mo 2O 15 sub-microwires for boosting photocatalytic performance. CrystEngComm 2021. [DOI: 10.1039/d1ce01193f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A BiOBr/Bi6Mo2O15 edge-on heterostructure with fast electron transport could improve interface conductivity and accelerate charge-separation efficiency.
Collapse
Affiliation(s)
- Gui Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yujun Liang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Jian Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Kun Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zikang Zeng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhuoran Xiong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
15
|
Intrinsic carbon-doping induced synthesis of oxygen vacancies-mediated TiO2 nanocrystals: Enhanced photocatalytic NO removal performance and mechanism. J Catal 2021. [DOI: 10.1016/j.jcat.2020.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Gu Z, Asakura Y, Yin S. High yield post-thermal treatment of bulk graphitic carbon nitride with tunable band structure for enhanced deNO x photocatalysis. NANOTECHNOLOGY 2020; 31:114001. [PMID: 31751957 DOI: 10.1088/1361-6528/ab59f6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The bulk graphitic carbon nitride (CN) suffers from low specific surface area, which limits its practical application for air purification. Here, we reported a facile post-thermal treatment to break bulk CN into nanosheets whose specific surface areas increased from 13.6 m2 g-1 to 68.0 m2 g-1. The yield of CN nanosheets reached up to 67%, and its photocatalytic decomposition of NOx activity was about 3.0 times higher than that of bulk CN. Moreover, the CN nanosheets obtained at 550 °C with higher specific surface area (113.9 m2 g-1) displayed lower photocatalytic activity than that obtained at 500 °C with lower specific surface area (68.0 m2 g-1), which was attributed to its lower valence band. This study illustrates that many factors including specific surface area and band structure could affect the performance of photocatalysts so that it is necessary to take account of various factors. Moreover, the facile and high yield thermal treatment provides the foundation for further large-scale industrial applications.
Collapse
Affiliation(s)
- Zhanyong Gu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 9808578, Japan
| | | | | |
Collapse
|
17
|
Li M, Wang X, Zhu Q, Li JG, Kim BN. Crystallization and architecture engineering of ZnWO 4 for enhanced photoluminescence. CrystEngComm 2020. [DOI: 10.1039/d0ce00828a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Crystal engineering of ZnWO4 was achieved with oxalic acid and (NH4)2SO4 as modifiers upon hydrothermal reaction, which produced nanorods, microplates and well-organized architectures that clearly show morphology-dependent photoluminescence.
Collapse
Affiliation(s)
- Meiting Li
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education)
- School of Materials Science and Engineering
- Northeastern University
- Shenyang
- China
| | - Xuejiao Wang
- College of New Energy
- Bohai University
- Jinzhou
- China
| | - Qi Zhu
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education)
- School of Materials Science and Engineering
- Northeastern University
- Shenyang
- China
| | - Ji-Guang Li
- Research Center for Functional Materials
- National Institute for Materials Science
- Ibaraki 305-0044
- Japan
| | - Byung-Nam Kim
- Research Center for Functional Materials
- National Institute for Materials Science
- Ibaraki 305-0044
- Japan
| |
Collapse
|
18
|
Hermawan A, Hanindriyo AT, Ramadhan ER, Asakura Y, Hasegawa T, Hongo K, Inada M, Maezono R, Yin S. Octahedral morphology of NiO with (111) facet synthesized from the transformation of NiOHCl for the NOx detection and degradation: experiment and DFT calculation. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00682c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NiO with polar (111) facets was successfully synthesized from the transformation of a layered NiOHCl, exhibiting excellent NOx detection and degradation activity.
Collapse
Affiliation(s)
- Angga Hermawan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University 2-1-1 Katahira
- Sendai
- Japan
| | | | | | - Yusuke Asakura
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University 2-1-1 Katahira
- Sendai
- Japan
| | - Takuya Hasegawa
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University 2-1-1 Katahira
- Sendai
- Japan
| | - Kenta Hongo
- School of Information Science
- JAIST
- Nomi
- Japan
- Research Center for Advanced Computing Infrastructure
| | - Miki Inada
- Center of Advanced Instrumental Analysis
- Kyushu University
- Kasuga-Shi
- Japan
| | | | - Shu Yin
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University 2-1-1 Katahira
- Sendai
- Japan
| |
Collapse
|
19
|
Fernandes N, Rodrigues CF, Moreira AF, Correia IJ. Overview of the application of inorganic nanomaterials in cancer photothermal therapy. Biomater Sci 2020; 8:2990-3020. [DOI: 10.1039/d0bm00222d] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Cancer photothermal therapy (PTT) has captured the attention of researchers worldwide due to its localized and trigger-activated therapeutic effect.
Collapse
Affiliation(s)
- Natanael Fernandes
- CICS-UBI – Health Sciences Research Centre
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Carolina F. Rodrigues
- CICS-UBI – Health Sciences Research Centre
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - André F. Moreira
- CICS-UBI – Health Sciences Research Centre
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Ilídio J. Correia
- CICS-UBI – Health Sciences Research Centre
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
- CIEPQF—Departamento de Engenharia Química
| |
Collapse
|
20
|
Hu W, Dong Z, Ma Z, Liu Y. Microstructure refinement in W–Y 2O 3 alloys via an improved hydrothermal synthesis method and low temperature sintering. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01271k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to prepare high performance oxide-dispersion-strengthened tungsten-based alloys, W–Y2O3 composite nanopowders were prepared using an improved hydrothermal synthesis method with the addition of the surfactant polyvinyl pyrrolidone (PVP).
Collapse
Affiliation(s)
- Weiqiang Hu
- State Key Lab of Hydraulic Engineering Simulation and Safety
- School of Materials Science and Engineering
- Tianjin University
- Tianjin 300072
- China
| | - Zhi Dong
- State Key Lab of Hydraulic Engineering Simulation and Safety
- School of Materials Science and Engineering
- Tianjin University
- Tianjin 300072
- China
| | - Zongqing Ma
- State Key Lab of Hydraulic Engineering Simulation and Safety
- School of Materials Science and Engineering
- Tianjin University
- Tianjin 300072
- China
| | - Yongchang Liu
- State Key Lab of Hydraulic Engineering Simulation and Safety
- School of Materials Science and Engineering
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|