1
|
Wu J, Chen K, Xue D. Ultrafast synthesis and luminescence properties of rare earth orthoniobates RENbO 4(RE = La, Eu, Gd, Yb, Lu). NANOTECHNOLOGY 2024; 35:425602. [PMID: 39047758 DOI: 10.1088/1361-6528/ad66d5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Rare earth orthoniobates (RENbO4) are one kind of important functional materials due to its applications in solid-state phosphors, thermal barrier coatings, and microwave dielectric ceramics. The synthesis of rare earth niobates often needs high reaction temperatures (1300 °C-1700 °C) and long processing times (from hours to tens of hours) in solid-state reactions, which can increase the study time of the relationship between structure and properties. In this work, we used ultrafast high-temperature sintering method to synthesize RENbO4(RE = La, Eu, Gd, Yb, Lu), and found specific structure and properties in these materials obtained with specific synthetic techniques. Based on the electronegativity scale, the charge transfer energy of lanthanide ions in the YNbO4crystal was calculated. The rapid synthesis of RENbO4in a vacuum atmosphere generated more oxygen vacancies, and the structures of [REO8] and [NbO6] were distorted. The shortening of the fluorescence lifetime of LaNbO4and EuNbO4was related to the formation of self-trapped excitons facilitated by lattice distortion. The emission peak of LuNbO4at about 530 nm is attributed to the oxygen vacancy in the niobate group. The reported synthetic methods can provide a fast materials screening route for high melting point inorganic materials.
Collapse
Affiliation(s)
- Ji'an Wu
- Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Kunfeng Chen
- Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China
| | - Dongfeng Xue
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, People's Republic of China
| |
Collapse
|
2
|
Bochenek D, Brzezińska D, Niemiec P, Kozielski L. The Influence of Lanthanum Admixture on Microstructure and Electrophysical Properties of Lead-Free Barium Iron Niobate Ceramics. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3666. [PMID: 39124331 PMCID: PMC11312510 DOI: 10.3390/ma17153666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
This article presents the research results of lead-free Ba1-3/2xLax(Fe0.5Nb0.5)O3 (BFNxLa) ceramic materials doped with La (x = 0.00-0.06) obtained via the solid-state reaction method. The tests of the BFNxLa ceramic samples included structural (X-ray), morphological (SEM, EDS, EPMA), DC electrical conductivity, and dielectric measurements. For all BFNxLa ceramic samples, the X-ray tests revealed a perovskite-type cubic structure with the space group Pm3¯m. In the case of the samples with the highest amount of lanthanum, i.e., for x = 0.04 (BFN4La) and x = 0.06 (BFN6La), the X-ray analysis also showed a small amount of pyrochlore LaNbO4 secondary phase. In the microstructure of BFNxLa ceramic samples, the average grain size decreases with increasing La content, affecting their dielectric properties. The BFN ceramics show relaxation properties, diffusion phase transition, and very high permittivity at room temperature (56,750 for 1 kHz). The admixture of lanthanum diminishes the permittivity values but effectively reduces the dielectric loss and electrical conductivity of the BFNxLa ceramic samples. All BFNxLa samples show a Debye-like relaxation behavior at lower frequencies; the frequency dispersion of the dielectric constant becomes weaker with increasing admixtures of lanthanum. Research has shown that using an appropriate amount of lanthanum introduced to BFN can obtain high permittivity values while decreasing dielectric loss and electrical conductivity, which predisposes them to energy storage applications.
Collapse
Affiliation(s)
- Dariusz Bochenek
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland; (P.N.); (L.K.)
| | - Dagmara Brzezińska
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland; (P.N.); (L.K.)
| | | | | |
Collapse
|
3
|
Lin T, Seaby T, Hu Y, Ding S, Liu Y, Luo B, Wang L. Understanding and Control of Activation Process of Lithium-Rich Cathode Materials. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractLithium-rich materials (LRMs) are among the most promising cathode materials toward next-generation Li-ion batteries due to their extraordinary specific capacity of over 250 mAh g−1 and high energy density of over 1 000 Wh kg−1. The superior capacity of LRMs originates from the activation process of the key active component Li2MnO3. This process can trigger reversible oxygen redox, providing extra charge for more Li-ion extraction. However, such an activation process is kinetically slow with complex phase transformations. To address these issues, tremendous effort has been made to explore the mechanism and origin of activation, yet there are still many controversies. Despite considerable strategies that have been proposed to improve the performance of LRMs, in-depth understanding of the relationship between the LRMs’ preparation and their activation process is limited. To inspire further research on LRMs, this article firstly systematically reviews the progress in mechanism studies and performance improving attempts. Then, guidelines for activation controlling strategies, including composition adjustment, elemental substitution and chemical treatment, are provided for the future design of Li-rich cathode materials. Based on these investigations, recommendations on Li-rich materials with precisely controlled Mn/Ni/Co composition, multi-elemental substitution and oxygen vacancy engineering are proposed for designing high-performance Li-rich cathode materials with fast and stable activation processes.
Graphical abstract
The “Troika” of composition adjustment, elemental substitution, and chemical treatment can drive the Li-rich cathode towards stabilized and accelerated activation.
Collapse
|
4
|
Controlled synthesis of niobium and rare earth mixed oxides for catalytic combustion of chlorinated VOCs in the synthesis process of polyether polyol and polyurethane. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Noncoordinating-substituents-induced various Co and Ni coordination polymers with multiple pathways detection of Fe3+ and Cr(Ⅵ). Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Su S, Bai X, Ming L, Xiao Z, Wang C, Zhang B, Cheng L, Ou X. Influence of sintering temperature on the electrochemical properties of P2-type Na0.67Mn0.7Ni0.2Mg0.1O2 cathodes for sodium-ion batteries. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
A Comparative Study on the Wettability of Unstructured and Structured LiFePO 4 with Nanosecond Pulsed Fiber Laser. MICROMACHINES 2021; 12:mi12050582. [PMID: 34065286 PMCID: PMC8160679 DOI: 10.3390/mi12050582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/05/2022]
Abstract
The wettability of electrodes increases the power and energy densities of the cells of lithium-ion batteries, which is vital to improving their electrochemical performance. Numerous studies in the past have attempted to explain the effect of electrolyte and calendering on wettability. In this work, the wettability behavior of structured and unstructured LiFePO4 electrodes was studied. Firstly, the wettability morphology of the structured electrode was analyzed, and the electrode geometry was quantified in terms of ablation top and bottom width, ablation depth, and aspect ratio. From the result of the geometry analysis, the minimum measured values of aspect ratio and ablation depth were used as structured electrodes. Laser structuring with pitch distances of 112 μm, 224 μm, and 448 μm was applied. Secondly, the wettability of the electrodes was measured mainly by total wetting time and electrolyte spreading area. This study demonstrates that the laser-based structuring of the electrode increases the electrochemically active surface area of the electrode. The electrode structured with 112 μm pitch distance exhibited the fastest wetting at a time of 13.5 s. However, the unstructured electrode exhibited full wetting at a time of 84 s.
Collapse
|
8
|
Influence of Ce/Nb Molar Ratios on Oxygen-Rich CexNb1-xO4+δ Materials for Catalytic Combustion of VOCs in the Process of Polyether Polyol Synthesis. Catal Letters 2021. [DOI: 10.1007/s10562-021-03652-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Chi J, Mu Y, Li Y, Shao P, Liu G, Cai B, Xu N, Chen Y. Polytorsional-amide/carboxylates-directed Cd( ii) coordination polymers exhibiting multi-functional sensing behaviors. RSC Adv 2021; 11:31756-31765. [PMID: 35496860 PMCID: PMC9041708 DOI: 10.1039/d1ra04411g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/19/2021] [Indexed: 12/11/2022] Open
Abstract
By rational assembly of polytorsional-amide [N,N′-bis(4-methylenepyridin-4-yl)-1,4-naphthalene dicarboxamide (L)] and polytorsional-carboxylates [H2ADI = adipic acid, H2PIM = pimelic acid, H2SUB = suberic acid], three new Cd-based coordination polymers (CPs) C30H30CdN4O7 (1), C31H32CdN4O7 (2) and C31.03H30.55CdCl0.24N4O5.52 (3) were successfully synthesized. CPs 1–2 and 3 are 2D networks and a 3D framework, which all display 3,5-connected topologies with different structural details. The effects of carboxylates with different carbon chains on the structure of the complexes were studied. Fluorescence experiments show that CPs 1–3 have good multi-functional sensing ability for metal cations (Fe3+), anions (MnO4−, CrO42−, Cr2O72−) and organochlorine pesticides (2,6-dichloro-4-nitroamine) with good anti-interference and recyclable characteristics. The possible sensing mechanism is also investigated in detail. Three (3,5)-connected Cd(ii) coordination polymers induced by polytorsional-amide/carboxylates exhibiting controllable multifunctional fluorescent sensing activities.![]()
Collapse
Affiliation(s)
- Jie Chi
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Yajun Mu
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Yan Li
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Pengpeng Shao
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Guocheng Liu
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bin Cai
- School of Chemistry and Chemical Engineerng, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Na Xu
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Yongqiang Chen
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, Shanxi, 030619, P. R. China
| |
Collapse
|
10
|
Qu S, Liu B, Wu J, Zhao Z, Liu J, Ding J, Han X, Deng Y, Zhong C, Hu W. Kirigami-Inspired Flexible and Stretchable Zinc-Air Battery Based on Metal-Coated Sponge Electrodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54833-54841. [PMID: 33237719 DOI: 10.1021/acsami.0c17479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of efficient and low-cost flexible metal electrodes is significant for flexible rechargeable zinc-air batteries (ZABs). Herein, we reported a new type of flexible metal (zinc and nickel) electrode fabricated via a two-step deposition method on polyurethane sponges (PUS) for flexible ZABs. Compared to conventional electrodes, the metal-coated PUS electrodes exhibited great flexibility, softness, and natural mechanical resilience. In addition, a flexible sandwich-structured ZAB was assembled with the metal-coated PUS electrodes and in situ cross-linked polyacrylic acid (PAA)-KOH hydrogel electrolyte. The flexible ZAB presented stable discharge/charge performance even under complex rolling and twisting deformations. Moreover, inspired by the kirigami-strategy for device-level stretchability, a 100% stretchable fence-shaped ZAB and a 160% stretchable serpentine-shaped ZAB were cut from the above-mentioned flexible ZABs. The kirigami-inspired configuration enabled the battery performance to be stable during stretching, benefiting from the softness of the PUS@metal electrode. These flexible and stretchable ZABs would broaden the promising applications for portable and wearable energy storage devices.
Collapse
Affiliation(s)
- Shengxiang Qu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Bin Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jingkun Wu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zequan Zhao
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jie Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jia Ding
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaopeng Han
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yida Deng
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|