1
|
Illarze M, Arim M, Ramos-Jiliberto R, Borthagaray AI. Community connectivity and local heterogeneity explain animal species co-occurrences within pond communities. J Anim Ecol 2024; 93:1123-1134. [PMID: 38877697 DOI: 10.1111/1365-2656.14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/22/2024] [Indexed: 06/16/2024]
Abstract
Metacommunity processes have the potential to determine most features of the community structure. However, species diversity has been the dominant focus of studies. Nestedness, modularity and checkerboard distribution of species occurrences are main components of biodiversity organisation. Within communities, these patterns emerge from the interaction between functional diversity, spatial heterogeneity and resource availability. Additionally, the connectivity determines the pool of species for community assembly and, eventually, the pattern of species co-occurrence within communities. Despite the recognised theoretical expectations, the change in occurrence patterns within communities along ecological gradients has seldom been considered. Here, we analyse the spatial occurrence of animal species along sampling units within 18 temporary ponds and its relationship with pond environments and geographic isolation. Isolated ponds presented a nested organisation of species with low spatial segregation-modularity and checkerboard-and the opposite was found for communities with high connectivity. A pattern putatively explained by high functional diversity in ponds with large connectivity and heterogeneity, which determines that species composition tracks changes in microhabitats. On the contrary, nestedness is promoted in dispersal-limited communities with low functional diversity, where microhabitat filters mainly affect richness without spatial replacement between functional groups. Vegetation biomass promotes nestedness, probably due to the observed increase in spatial variance in biomass with the mean biomass. Similarly, the richness of vegetation reduced the spatial segregation of animals within communities. This result may be due to the high plant diversity of the pond that is observed similarly along all sampling units, which promotes the spatial co-occurrence of species at this scale. In the study system, the spatial arrangement of species within communities is related to local drivers as heterogeneity and metacommunity processes by means of dispersal between communities. Patterns of species co-occurrence are interrelated with community biodiversity and species interactions, and consequently with most functional and structural properties of communities. These results indicate that understanding the interplay between metacommunity processes and co-occurrence patterns is probably more important than previously thought to understand biodiversity assembly and functioning.
Collapse
Affiliation(s)
- Mariana Illarze
- Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Maldonado, Uruguay
| | - Matías Arim
- Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Maldonado, Uruguay
| | | | - Ana I Borthagaray
- Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional del Este (CURE), Universidad de la República, Maldonado, Uruguay
| |
Collapse
|
2
|
Krasnov BR, Grabovsky VI, Khokhlova IS, Korallo-Vinarskaya NP, López Berrizbietia MF, Matthee S, Sanchez J, Stanko M, VAN DER Mescht L, Vinarski MV. Structure of compound and component communities of fleas parasitic on small mammals in six different regions as revealed by environmental-based co-occurrence geometry analyses. Integr Zool 2024. [PMID: 38858802 DOI: 10.1111/1749-4877.12856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
We inferred the patterns of co-occurrence of flea species in compound (across all host species) and component (across conspecific hosts) communities from six regions of the world (Mongolia, Northwest Argentina, Argentinian Patagonia, West Siberia, Slovakia, and South Africa) using the novel eigenvector ellipsoid method. This method allows us to infer structural community patterns by comparing species' environmental requirements with the pattern of their co-occurrences. We asked whether: (a) communities are characterized by species segregation, nestedness, or modularity; (b) patterns detected by the novel method conform to the patterns identified by traditional methods that search for non-randomness in community structure; and (c) the pattern of flea species co-occurrences in component communities is associated with host species traits. The results of the application of the eigenvector ellipsoid method suggested that the co-occurrence of flea species was random in all compound communities except in South Africa, where this community demonstrated a tendency to be nested. Flea species co-occurrences were random in many component communities. Species segregation was detected in the flea community of one host, whereas the flea communities of 14 hosts from different regions appeared to be nested. No indication of a modular structure in any community was found. The nestedness of flea component communities was mainly characteristic of hosts with a low relative brain mass. We concluded that the application of this novel method that combines data on species distribution and their environmental requirements allows better identification of the community structural patterns and produces more reliable results as compared with traditional methods.
Collapse
Affiliation(s)
- Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Vasily I Grabovsky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Irina S Khokhlova
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Natalia P Korallo-Vinarskaya
- Laboratory of Parasitology, Zoological Institute of Russian Academy of Sciences, Saint-Petersburg, Russian Federation
| | - M Fernanda López Berrizbietia
- Programa de Conservación de los Murciélagos de Argentina (PCMA) and Instituto de Investigaciones de Biodiversidad Argentina (PIDBA)-CCT CONICET Noa Sur (Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Naturales e IML, UNT, and Fundación Miguel Lillo, San Miguel de Tucumán, Argentina
| | - Sonja Matthee
- Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland, South Africa
| | - Juliana Sanchez
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires-CITNOBA (UNNOBA-UNSAdA- CONICET), Pergamino, Argentina
| | - Michal Stanko
- Institute of Parasitology and Institute of Zoology, Slovak Academy of Sciences, Kosice, Slovakia
| | - Luther VAN DER Mescht
- Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland, South Africa
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa
| | - Maxim V Vinarski
- Laboratory of Macroecology and Biogeography of Invertebrates, Saint-Petersburg State University, Saint-Petersburg, Russian Federation
| |
Collapse
|
3
|
Cleveland CA, Dallas TA, Vigil S, Mead DG, Corn JL, Park AW. Vector communities under global change may exacerbate and redistribute infectious disease risk. Parasitol Res 2023; 122:963-972. [PMID: 36847842 DOI: 10.1007/s00436-023-07799-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
Vector-borne parasites may be transmitted by multiple vector species, resulting in an increased risk of transmission, potentially at larger spatial scales compared to any single vector species. Additionally, the different abilities of patchily distributed vector species to acquire and transmit parasites will lead to varying degrees of transmission risk. Investigation of how vector community composition and parasite transmission change over space due to variation in environmental conditions may help to explain current patterns in diseases but also informs our understanding of how patterns will change under climate and land-use change. We developed a novel statistical approach using a multi-year, spatially extensive case study involving a vector-borne virus affecting white-tailed deer transmitted by Culicoides midges. We characterized the structure of vector communities, established the ecological gradient controlling change in structure, and related the ecology and structure to the amount of disease reporting observed in host populations. We found that vector species largely occur and replace each other as groups, rather than individual species. Moreover, community structure is primarily controlled by temperature ranges, with certain communities being consistently associated with high levels of disease reporting. These communities are essentially composed of species previously undocumented as potential vectors, whereas communities containing putative vector species were largely associated with low levels, or even absence, of disease reporting. We contend that the application of metacommunity ecology to vector-borne infectious disease ecology can greatly aid the identification of transmission hotspots and an understanding of the ecological drivers of parasite transmission risk both now and in the future.
Collapse
Affiliation(s)
- Christopher A Cleveland
- Southeastern Cooperative Wildlife Disease Study (SCWDS), Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA. .,Center for Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA, USA.
| | - Tad A Dallas
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29205, USA.
| | - Stacey Vigil
- Southeastern Cooperative Wildlife Disease Study (SCWDS), Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel G Mead
- Southeastern Cooperative Wildlife Disease Study (SCWDS), Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Joseph L Corn
- Southeastern Cooperative Wildlife Disease Study (SCWDS), Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Andrew W Park
- Center for Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA, USA. .,Odum School of Ecology, University of Georgia, 140 E. Green Street, Athens, GA, 30602, USA.
| |
Collapse
|
4
|
Presley SJ, Willig MR. From island biogeography to landscape and metacommunity ecology: A macroecological perspective of bat communities. Ann N Y Acad Sci 2022; 1514:43-61. [PMID: 35509199 DOI: 10.1111/nyas.14785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The equilibrium theory of island biogeography and its quantitative consideration of origination and extinction dynamics as they relate to island area and distance from source populations have evolved over time and enriched theory related to many disciplines in spatial ecology. Indeed, the island focus was catalytic to the emergence of landscape ecology and macroecology in the late 20th century. We integrate concepts and perspectives of island biogeography, landscape ecology, macroecology, and metacommunity ecology, and show how these disciplines have advanced the understanding of variation in abundance, biodiversity, and composition of bat communities. We leverage the well-studied bat fauna of the islands in the Caribbean to illustrate the complex interplay of ecological, biogeographical, and evolutionary processes in molding local biodiversity and system-wide structure. Thereafter, we highlight the role of habitat loss and fragmentation, which is increasing at an accelerating rate during the Anthropocene, on the structure of local bat communities and regional metacommunities across landscapes. Bat species richness increases with the amount of available habitat, often forming nested subsets along gradients of patch or island area. Similarly, the distance to and identity of sources of colonization influence the richness, composition, and metacommunity structure of islands and landscape networks.
Collapse
Affiliation(s)
- Steven J Presley
- Institute of the Environment, Center for Environmental Sciences & Engineering, and Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Michael R Willig
- Institute of the Environment, Center for Environmental Sciences & Engineering, and Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
5
|
Krasnov BR, Korallo-Vinarskaya N, Vinarski MV, Khokhlova IS. Temporal variation of metacommunity structure in arthropod ectoparasites harboured by small mammals: the effects of scale and climatic fluctuations. Parasitol Res 2022; 121:537-549. [PMID: 35076775 DOI: 10.1007/s00436-021-07416-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/22/2021] [Indexed: 11/27/2022]
Abstract
We applied the elements of metacommunity structure (EMS) approach and studied the temporal dynamics of metacommunity structure in arthropod ectoparasites (fleas, gamasid mites and ixodid ticks) harboured by six small mammalian hosts sampled for three decades in the same locality in Western Siberia at three hierarchical scales (inframetacommunities, component metacommunities and a compound metacommunity). All metacommunities were positively coherent. Inframetacommunity structures varied across sampling periods in all host species. The main structural pattern in an inframetacommunity of the same host varied across sampling times but was mostly characterized by clumped species distributions (Clementsian, Gleasonian and their quasi-versions). Component metacommunities in five of the six host species were characterized by either a Clementsian or a quasi-Clementsian distribution. In four of the six host species, this pattern was driven by mite distribution. The temporal structure of compound metacommunity was characterized by a Clementsian pattern. In contrast to the majority of component metacommunities, this pattern was driven by fleas, whereas the temporal structure of gamasid mite compound metacommunities demonstrated a Gleasonian distribution. The temporal gradient in infracommunity composition was not associated with temporal changes in either air temperature or precipitation, whereas the precipitation gradient was positively correlated with the structure of component (in five host species) and compound metacommunities. In conclusion, the best-fit metacommunity structure of ectoparasites varies temporally due to temporal changes in distribution patterns that can be associated with year-to-year climatic variation, affecting both hosts and parasites.
Collapse
Affiliation(s)
- Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreshet Ben-Gurion, Israel.
| | - Natalia Korallo-Vinarskaya
- Laboratory of Arthropod-Borne Viral Infections, Omsk Research Institute of Natural Foci Infections, Mira str. 7, 644080, Omsk, Russia.,Omsk State Pedagogical University, Tukhachevskogo Emb. 14, 644099, Omsk, Russia
| | - Maxim V Vinarski
- Laboratory of Macroecology and Biogeography of Invertebrates, Saint-Petersburg State University, University Emb. 7/9, 199034, Saint-Petersburg, Russia.,Omsk State University, Neftezavodskaya Str. 11, 644053, Omsk, Russia
| | - Irina S Khokhlova
- Wyler Department of Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| |
Collapse
|
6
|
Willig MR, Presley SJ, Cullerton EI. A canonical metacommunity structure over 3 decades: ecologically consistent but spatially dynamic patterns in a hurricane-prone montane forest. Oecologia 2021; 196:919-933. [PMID: 34173893 DOI: 10.1007/s00442-021-04968-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
The Anthropocene is a time of rapid change induced by human activities, including pulse and press disturbances that affect the species composition of local communities and connectivity among them, giving rise to spatiotemporal dynamics at multiple scales. We evaluate effects of global warming and repeated intense hurricanes on gastropod metacommunities in montane tropical rainforests of Puerto Rico for each of 28 consecutive years. Specifically, we quantified metacommunity structure each year; assessed effects of global warming, hurricane-induced disturbance, and secondary succession on interannual variation in metacommunity structure; and evaluated legacies of previous land use on metacommunity structure. Gastropods were sampled annually during a 28-year period characterized by disturbance and succession associated with 3 major hurricanes (Hurricanes Hugo, Georges, and Maria). For each year, we evaluated coherence (the extent to which the environmental distributions of species are uninterrupted along a common latent environmental gradient), species range turnover, and species range boundary clumping; and conducted co-occurrence analyses for each pair of species. We used generalized linear mixed-effects model to evaluate long-term responses of the metacommunity to aspects of global warming and disturbance. Metacommunity structure was remarkably stable, with consistent patterns of species co-occurrence. Disturbance, warming, and successional stage had little effect on metacommunity structure. Despite great temporal variation in environmental conditions, groups of species tracked their niche through space and time to maintain the same general structure. Consequently, metacommunity structure was highly resistant and resilient to multiple disturbances, even those that greatly altered forest structure.
Collapse
Affiliation(s)
- Michael R Willig
- Department of Ecology and Evolutionary Biology, Institute of the Environment, Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT, 06269-4210, USA
| | - Steven J Presley
- Department of Ecology and Evolutionary Biology, Institute of the Environment, Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT, 06269-4210, USA.
| | - Eve I Cullerton
- Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT, 06269-4210, USA
| |
Collapse
|