1
|
Zhang W, Ma Y, Huang Y, He M, Zhang X, Xu L, Wang Y, Liu L, Zhu Y. Genome-wide characterization of RsHDAC gene members unravels a positive role of RsHDA9 in thermotolerance in radish (Raphanus sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109439. [PMID: 39721191 DOI: 10.1016/j.plaphy.2024.109439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Radish is an economically important root vegetable crop worldwide. Histone deacetylases (HDACs), one of the most important epigenetic regulators, play prominent roles in plant growth and development as well as abiotic stress responses. Nevertheless, the systematical characterization and critical roles of HDAC gene members in thermogenesis remains elusive in radish. Herein, a total of 21 RsHDAC genes were identified from the radish genome. Among them, two RsSRTs, six RsHDTs and 13 RsHDAs were classified into the SIR2, HD2 and RPD3/HDA1subfamily, respectively. The RNA-seq analysis indicated that three RsHDAs (RsHDA6.1, RsHDA6.2 and RsHDA19) and five RsHDTs exhibited high expression in vascular cambium of radish taproot. Both the RsHDT3 and RsHDA9 showed dramatically up-regulated expression under heat, salt and three heavy metals treatments. Moreover, the transient LUC reporter assay revealed that the promoter activity of the nucleus-localized RsHDA9 was intensely induced by heat stress. Intriguingly, overexpression of RsHDA9 promoted thermotolerance via enhancing proline accumulation and scavenging of reactive oxygen species in radish cotyledons, whereas the supplement of trichostatin A (TSA) led to the opposite phenotype. Notably, RsWRKY26 bound to the RsHDA9 promoter and activated its transcription to achieve enhancing thermotolerance in radish. Collectively, these findings would facilitate deciphering molecular mechanism underlying RsHDA9-mediated regulatory network of thermogenesis in radish.
Collapse
Affiliation(s)
- Weilan Zhang
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yingfei Ma
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yudi Huang
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Min He
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaoli Zhang
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liang Xu
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Yan Wang
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Liwang Liu
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yuelin Zhu
- Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Sanya Institute, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
2
|
Zhang P, He Y, Huang S. Unlocking epigenetic breeding potential in tomato and potato. ABIOTECH 2024; 5:507-518. [PMID: 39650134 PMCID: PMC11624185 DOI: 10.1007/s42994-024-00184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/08/2024] [Indexed: 12/11/2024]
Abstract
Tomato (Solanum lycopersicum) and potato (Solanum tuberosum), two integral crops within the nightshade family, are crucial sources of nutrients and serve as staple foods worldwide. Molecular genetic studies have significantly advanced our understanding of their domestication, evolution, and the establishment of key agronomic traits. Recent studies have revealed that epigenetic modifications act as "molecular switches", crucially regulating phenotypic variations essential for traits such as fruit ripening in tomatoes and tuberization in potatoes. This review summarizes the latest findings on the regulatory mechanisms of epigenetic modifications in these crops and discusses the integration of biotechnology and epigenomics to enhance breeding strategies. By highlighting the role of epigenetic control in augmenting crop yield and adaptation, we underscores its potential to address the challenges posed by a growing global population as well as changing climate.
Collapse
Affiliation(s)
- Pingxian Zhang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
| | - Yuehui He
- Peking-Tsinghua Center for Life Sciences & State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing, 100871 China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, 261325 China
| | - Sanwen Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 China
- National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101 China
| |
Collapse
|
3
|
Ju J, Yang J, Wei J, Yuan W, Li Y, Li D, Ling P, Ma Q, Wang C, Dai M, Su J. GhASHH1.A and GhASHH2.A Improve Tolerance to High and Low Temperatures and Accelerate the Flowering Response to Temperature in Upland Cotton ( Gossypium hirsutum). Int J Mol Sci 2024; 25:11321. [PMID: 39457102 PMCID: PMC11508336 DOI: 10.3390/ijms252011321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
The trithorax group (TrxG) complex is an important protein in the regulation of plant histone methylation. The ABSENT, SMALL, OR HOMEOTIC DISCS 1 (ASH1) gene family, as important family members of the TrxG complex, has been shown to regulate tolerance to abiotic stress and growth and development in many plants. In this study, we identified nine GhASH1s in upland cotton. Bioinformatics analysis revealed that GhASH1s contain a variety of cis-acting elements related to stress resistance and growth and development. The transcriptome expression profiles revealed that GhASHH1.A and GhASHH2.A genes expression were upregulated in flower organs and in response to external temperature stress. The results of virus-induced gene silencing (VIGS) indicated that GhASHH1.A and GhASHH2.A genes silencing reduced the ability of cotton to adapt to temperature stress and delayed the development of the flowering phenotype. We also showed that the silencing of these two target genes did not induce early flowering at high temperature (32 °C), suggesting that GhASHH1.A and GhASHH2.A might regulate cotton flowering in response to temperature. These findings provide genetic resources for future breeding of early-maturing and temperature-stress-tolerant cotton varieties.
Collapse
Affiliation(s)
- Jisheng Ju
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China;
| | - Junning Yang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Jiazhi Wei
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Wenmin Yuan
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Ying Li
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Dandan Li
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Pingjie Ling
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Qi Ma
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China;
| | - Caixiang Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
| | - Maohua Dai
- Hebei Provincial Key Laboratory of Crop Drought Resistance Research, Institute of Dryland Farming, Hebei Academy of Agriculture and Forestry Sciences, Hengshui 053000, China
| | - Junji Su
- Gansu Provincial Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (J.J.); (J.Y.); (J.W.); (W.Y.); (Y.L.); (D.L.); (P.L.); (C.W.)
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China;
| |
Collapse
|
4
|
Ma L, Xing L, Li Z, Jiang D. Epigenetic control of plant abiotic stress responses. J Genet Genomics 2024:S1673-8527(24)00246-7. [PMID: 39322116 DOI: 10.1016/j.jgg.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
On top of genetic information, organisms have evolved complex and sophisticated epigenetic regulation to adjust gene expression in response to developmental and environmental signals. Key epigenetic mechanisms include DNA methylation, histone modifications and variants, chromatin remodeling, and chemical modifications of RNAs. Epigenetic control of environmental responses is particularly important for plants, which are sessile and unable to move away from adverse environments. Besides enabling plants to rapidly respond to environmental stresses, some stress-induced epigenetic changes can be maintained, providing plants with a pre-adapted state to recurring stresses. Understanding these epigenetic mechanisms offers valuable insights for developing crop varieties with enhanced stress tolerance. Here, we focus on abiotic stresses and summarize recent progress in characterizing stress-induced epigenetic changes and their regulatory mechanisms and roles in plant abiotic stress resistance.
Collapse
Affiliation(s)
- Lijun Ma
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Lihe Xing
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zicong Li
- Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore.
| |
Collapse
|
5
|
Yu Z, Wang J, Zhang C, Zhan Q, Shi L, Song B, Han D, Jiang J, Huang J, Ou X, Zhang Z, Lai J, Li QQ, Yang C. SIZ1-mediated SUMOylation of CPSF100 promotes plant thermomorphogenesis by controlling alternative polyadenylation. MOLECULAR PLANT 2024; 17:1392-1406. [PMID: 39066483 DOI: 10.1016/j.molp.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/01/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Under warm temperatures, plants adjust their morphologies for environmental adaption via precise gene expression regulation. However, the function and regulation of alternative polyadenylation (APA), an important fine-tuning of gene expression, remains unknown in plant thermomorphogenesis. In this study, we found that SUMOylation, a critical post-translational modification, is induced by a long-term treatment at warm temperatures via a SUMO ligase SIZ1 in Arabidopsis. Disruption of SIZ1 altered the global usage of polyadenylation signals and affected the APA dynamic of thermomorphogenesis-related genes. CPSF100, a key subunit of the CPSF complex for polyadenylation regulation, is SUMOylated by SIZ1. Importantly, we demonstrated that SUMOylation is essential for the function of CPSF100 in genome-wide polyadenylation site choice during thermomorphogenesis. Further analyses revealed that the SUMO conjugation on CPSF100 attenuates its interaction with two isoforms of its partner CPSF30, increasing the nuclear accumulation of CPSF100 for polyadenylation regulation. In summary, our study uncovers a regulatory mechanism of APA via SIZ1-mediated SUMOylation in plant thermomorphogenesis.
Collapse
Affiliation(s)
- Zhibo Yu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jun Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Cheng Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qiuna Zhan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Leqian Shi
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Bing Song
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jieming Jiang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Junwen Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Xiaolin Ou
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Qingshun Quinn Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Biomedical Science Division, College of Dental Medicine, Western University of Health Sciences, Pomona, CA 91766, USA.
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
6
|
Yang X, Guan H, Yang Y, Zhang Y, Su W, Song S, Liu H, Chen R, Hao Y. Extra- and intranuclear heat perception and triggering mechanisms in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1276649. [PMID: 37860244 PMCID: PMC10582638 DOI: 10.3389/fpls.2023.1276649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023]
Abstract
The escalating impact of global warming on crop yield and quality poses a significant threat to future food supplies. Breeding heat-resistant crop varieties holds promise, but necessitates a deeper understanding of the molecular mechanisms underlying plant heat tolerance. Recent studies have shed light on the initial events of heat perception in plants. In this review, we provide a comprehensive summary of the recent progress made in unraveling the mechanisms of heat perception and response in plants. Calcium ion (Ca2+), hydrogen peroxide (H2O2), and nitric oxide (NO) have emerged as key participants in heat perception. Furthermore, we discuss the potential roles of the NAC transcription factor NTL3, thermo-tolerance 3.1 (TT3.1), and Target of temperature 3 (TOT3) as thermosensors associated with the plasma membrane. Additionally, we explore the involvement of cytoplasmic HISTONE DEACETYLASE 9 (HDA9), mRNA encoding the phytochrome-interacting factor 7 (PIF7), and chloroplasts in mediating heat perception. This review also highlights the role of intranuclear transcriptional condensates formed by phytochrome B (phyB), EARLY FLOWERING 3 (ELF3), and guanylate-binding protein (GBP)-like GTPase 3 (GBPL3) in heat perception. Finally, we raise the unresolved questions in the field of heat perception that require further investigation in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanwei Hao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Zhu J, Cao X, Deng X. Epigenetic and transcription factors synergistically promote the high temperature response in plants. Trends Biochem Sci 2023; 48:788-800. [PMID: 37393166 DOI: 10.1016/j.tibs.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/03/2023]
Abstract
Temperature is one of the main environmental cues affecting plant growth and development, and plants have evolved multiple mechanisms to sense and acclimate to high temperature. Emerging research has shown that transcription factors, epigenetic factors, and their coordination are essential for plant temperature responses and the resulting phenological adaptation. Here, we summarize recent advances in molecular and cellular mechanisms to understand how plants acclimate to high temperature and describe how plant meristems sense and integrate environmental signals. Furthermore, we lay out future directions for new technologies to reveal heterogeneous responses in different cell types thus improving plant environmental plasticity.
Collapse
Affiliation(s)
- Jiaping Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Zhao F, Xue M, Zhang H, Li H, Zhao T, Jiang D. Coordinated histone variant H2A.Z eviction and H3.3 deposition control plant thermomorphogenesis. THE NEW PHYTOLOGIST 2023; 238:750-764. [PMID: 36647799 DOI: 10.1111/nph.18738] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Plants can sense temperature changes and adjust their development and morphology accordingly in a process called thermomorphogenesis. This phenotypic plasticity implies complex mechanisms regulating gene expression reprogramming in response to environmental alteration. Histone variants often associate with specific chromatin states; yet, how their deposition/eviction modulates transcriptional changes induced by environmental cues remains elusive. In Arabidopsis thaliana, temperature elevation-induced transcriptional activation at thermo-responsive genes entails the chromatin eviction of a histone variant H2A.Z by INO80, which is recruited to these loci via interacting with a key thermomorphogenesis regulator PIF4. Here, we show that both INO80 and the deposition chaperones of another histone variant H3.3 associate with ELF7, a critical component of the transcription elongator PAF1 complex. H3.3 promotes thermomorphogenesis and the high temperature-enhanced RNA Pol II transcription at PIF4 targets, and it is broadly required for the H2A.Z removal-induced gene activation. Reciprocally, INO80 and ELF7 regulate H3.3 deposition, and are necessary for the high temperature-induced H3.3 enrichment at PIF4 targets. Our findings demonstrate close coordination between H2A.Z eviction and H3.3 deposition in gene activation induced by high temperature, and pinpoint the importance of histone variants dynamics in transcriptional regulation.
Collapse
Affiliation(s)
- Fengyue Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Mande Xue
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Huairen Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ting Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Danhua Jiang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
9
|
Bai WP, Li HJ, Hepworth SR, Liu HS, Liu LB, Wang GN, Ma Q, Bao AK, Wang SM. Physiological and transcriptomic analyses provide insight into thermotolerance in desert plant Zygophyllum xanthoxylum. BMC PLANT BIOLOGY 2023; 23:7. [PMID: 36600201 PMCID: PMC9814312 DOI: 10.1186/s12870-022-04024-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/22/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Heat stress has adverse effects on the growth and reproduction of plants. Zygophyllum xanthoxylum, a typical xerophyte, is a dominant species in the desert where summer temperatures are around 40 °C. However, the mechanism underlying the thermotolerance of Z. xanthoxylum remained unclear. RESULTS Here, we characterized the acclimation of Z. xanthoxylum to heat using a combination of physiological measurements and transcriptional profiles under treatments at 40 °C and 45 °C, respectively. Strikingly, moderate high temperature (40 °C) led to an increase in photosynthetic capacity and superior plant performance, whereas severe high temperature (45 °C) was accompanied by reduced photosynthetic capacity and inhibited growth. Transcriptome profiling indicated that the differentially expressed genes (DEGs) were related to transcription factor activity, protein folding and photosynthesis under heat conditions. Furthermore, numerous genes encoding heat transcription shock factors (HSFs) and heat shock proteins (HSPs) were significantly up-regulated under heat treatments, which were correlated with thermotolerance of Z. xanthoxylum. Interestingly, the up-regulation of PSI and PSII genes and the down-regulation of chlorophyll catabolism genes likely contribute to improving plant performance of Z. xanthoxylum under moderate high temperature. CONCLUSIONS We identified key genes associated with of thermotolerance and growth in Z. xanthoxylum, which provide significant insights into the regulatory mechanisms of thermotolerance and growth regulation in Z. xanthoxylum under high temperature conditions.
Collapse
Affiliation(s)
- Wan-Peng Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Hu-Jun Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Shelley R Hepworth
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Hai-Shuang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Lin-Bo Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Gai-Ni Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Qing Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Ai-Ke Bao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Suo-Min Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China.
| |
Collapse
|
10
|
Agrawal R, Sharma M, Dwivedi N, Maji S, Thakur P, Junaid A, Fajkus J, Laxmi A, Thakur JK. MEDIATOR SUBUNIT17 integrates jasmonate and auxin signaling pathways to regulate thermomorphogenesis. PLANT PHYSIOLOGY 2022; 189:2259-2280. [PMID: 35567489 PMCID: PMC9342970 DOI: 10.1093/plphys/kiac220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/20/2022] [Indexed: 05/16/2023]
Abstract
Plant adjustment to environmental changes involves complex crosstalk between extrinsic and intrinsic cues. In the past two decades, extensive research has elucidated the key roles of PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and the phytohormone auxin in thermomorphogenesis. In this study, we identified a previously unexplored role of jasmonate (JA) signaling components, the Mediator complex, and their integration with auxin signaling during thermomorphogenesis in Arabidopsis (Arabidopsis thaliana). Warm temperature induces expression of JA signaling genes including MYC2, but, surprisingly, this transcriptional activation is not JA dependent. Warm temperature also promotes accumulation of the JA signaling receptor CORONATINE INSENSITIVE1 (COI1) and degradation of the JA signaling repressor JASMONATE-ZIM-DOMAIN PROTEIN9, which probably leads to de-repression of MYC2, enabling it to contribute to the expression of MEDIATOR SUBUNIT17 (MED17). In response to warm temperature, MED17 occupies the promoters of thermosensory genes including PIF4, YUCCA8 (YUC8), INDOLE-3-ACETIC ACID INDUCIBLE19 (IAA19), and IAA29. Moreover, MED17 facilitates enrichment of H3K4me3 on the promoters of PIF4, YUC8, IAA19, and IAA29 genes. Interestingly, both occupancy of MED17 and enrichment of H3K4me3 on these thermomorphogenesis-related promoters are dependent on PIF4 (or PIFs). Altered accumulation of COI1 under warm temperature in the med17 mutant suggests the possibility of a feedback mechanism. Overall, this study reveals the role of the Mediator complex as an integrator of JA and auxin signaling pathways during thermomorphogenesis.
Collapse
Affiliation(s)
- Rekha Agrawal
- Plant Mediator Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Mohan Sharma
- Signalling Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Nidhi Dwivedi
- Plant Mediator Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Sourobh Maji
- Plant Mediator Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Pallabi Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Alim Junaid
- Plant Mediator Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ashverya Laxmi
- Signalling Lab, National Institute of Plant Genome Research, New Delhi 110067, India
| | - Jitendra K Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, New Delhi 110067, India
- Plant Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|