1
|
Kyathanahalli C, Snedden M, Singh L, Regalia C, Keenan-Devlin L, Borders AE, Hirsch E. Maternal plasma and salivary anelloviruses in pregnancy and preterm birth. Front Med (Lausanne) 2023; 10:1191938. [PMID: 37396897 PMCID: PMC10309558 DOI: 10.3389/fmed.2023.1191938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Human anelloviruses, including torque teno virus (TTV) and torque teno mini virus (TTMV), are ubiquitous in the general population and have no known pathogenicity. We investigated the prevalence and viral load of TTV and TTMV in plasma and saliva over pregnancy, and assessed their association with spontaneous or medically indicated preterm birth. Methods This is a secondary analysis of the Measurement of Maternal Stress (MOMS) study, which recruited 744 individuals with singleton pregnancies from 4 US sites (Chicago, Pittsburgh, San Antonio, and rural Pennsylvania). Baseline outpatient visits took place in the second trimester (between 12'0 and 20'6/7 weeks' gestation), and follow-up visits in the third trimester (between 32'0 and 35'6/7 weeks' gestation). In a case-control study design, participants who delivered preterm (<37 weeks) resulting from spontaneous labor and/or preterm premature rupture of membranes ("sPTB") were compared with participants experiencing medically indicated preterm birth ("iPTB"), or delivery at term ("controls"). Plasma and saliva samples obtained during the second and third trimesters were tested for the presence and quantity of TTV and TTMV using real-time PCR. Demographic data were obtained via self-report, and clinical data via medical record review by trained research personnel. Results TTV was detected in plasma from 81% (second trimester) and 77% (third trimester) of participants, and in saliva from 64 and 60%. Corresponding detection rates for TTMV were 59 and 41% in plasma, and 35 and 24% in saliva. TTV and TTMV concentrations were similar between matched plasma and saliva samples. TTV prevalence and concentrations were not significantly different between groups (sPTB, iPTB, and controls). However, plasma TTMV in the third trimester was associated with sPTB and earlier gestational age at delivery. The iPTB group was not different from either the sPTB or the control group. In saliva, concentrations of TTV and TTMV were similar among the three groups. Both TTV and TTMV were more prevalent with increasing parity and were more common in Black and Hispanic participants compared to non-Hispanic White participants. Conclusion Anellovirus presence (specifically, TTMV) in the third trimester may be associated with preterm birth. Whether this association is causative remains to be determined.
Collapse
Affiliation(s)
- Chandrashekara Kyathanahalli
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, United States
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| | - Madeline Snedden
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Lavisha Singh
- Department of Statistics, NorthShore University HealthSystem, Evanston, IL, United States
| | - Camilla Regalia
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, United States
| | - Lauren Keenan-Devlin
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, United States
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| | - Ann E. Borders
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, United States
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
- Center for Healthcare Studies, Institute for Public Health and Medicine, University of Chicago Pritzker School of Medicine, Northwestern University, Evanston, IL, United States
| | - Emmet Hirsch
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, United States
- Department of Obstetrics and Gynecology, Pritzker School of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
2
|
Stout MJ, Brar AK, Herter BN, Rankin A, Wylie KM. The plasma virome in longitudinal samples from pregnant patients. Front Cell Infect Microbiol 2023; 13:1061230. [PMID: 36844406 PMCID: PMC9949529 DOI: 10.3389/fcimb.2023.1061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Nucleic acid from viruses is common in peripheral blood, even in asymptomatic individuals. How physiologic changes of pregnancy impact host-virus dynamics for acute, chronic, and latent viral infections is not well described. Previously we found higher viral diversity in the vagina during pregnancy associated with preterm birth (PTB) and Black race. We hypothesized that higher diversity and viral copy numbers in the plasma would show similar trends. Methods To test this hypothesis, we evaluated longitudinally collected plasma samples from 23 pregnant patients (11 term and 12 preterm) using metagenomic sequencing with ViroCap enrichment to enhance virus detection. Sequence data were analyzed with the ViroMatch pipeline. Results We detected nucleic acid from at least 1 virus in at least 1 sample from 87% (20/23) of the maternal subjects. The viruses represented 5 families: Herpesviridae, Poxviridae, Papillomaviridae, Anelloviridae, and Flaviviridae. We analyzed cord plasma from 18 of the babies from those patients and found nucleic acid from viruses in 33% of the samples (6/18) from 3 families: Herpesviridae, Papillomaviridae, and Anelloviridae. Some viral genomes were found in both maternal plasma and cord plasma from maternal-fetal pairs (e.g. cytomegalovirus, anellovirus). We found that Black race associated with higher viral richness (number of different viruses detected) in the maternal blood samples (P=0.003), consistent with our previous observations in vaginal samples. We did not detect associations between viral richness and PTB or the trimester of sampling. We then examined anelloviruses, a group of viruses that is ubiquitous and whose viral copy numbers fluctuate with immunological state. We tested anellovirus copy numbers in plasma from 63 pregnant patients sampled longitudinally using qPCR. Black race associated with higher anellovirus positivity (P<0.001) but not copy numbers (P=0.1). Anellovirus positivity and copy numbers were higher in the PTB group compared to the term group (P<0.01, P=0.003, respectively). Interestingly, these features did not occur at the time of delivery but appeared earlier in pregnancy, suggesting that although anelloviruses were biomarkers for PTB they were not triggering parturition. Discussion These results emphasize the importance of longitudinal sampling and diverse cohorts in studies of virome dynamics during pregnancy.
Collapse
Affiliation(s)
- Molly J. Stout
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Anoop K. Brar
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Brandi N. Herter
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Ananda Rankin
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
| | - Kristine M. Wylie
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
3
|
Linthorst J, Welkers MRA, Sistermans EA. Clinically relevant DNA viruses in pregnancy. Prenat Diagn 2022; 43:457-466. [PMID: 35170055 DOI: 10.1002/pd.6116] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 11/10/2022]
Abstract
Infections by DNA viruses during pregnancy are associated with increased health risks to both mother and fetus. Although not all DNA viruses are related to an increased risk of complications during pregnancy, several can directly infect the fetus and/or cause placental dysfunction. During NIPT analysis, the presence of viral DNA can be detected, theoretically allowing screening early in pregnancy. Although treatment options are currently limited, this might rapidly change in the near future. It is therefore important to be aware of the potential impact of these viruses on feto-maternal health. In this manuscript we provide a brief introduction into the most commonly detected DNA viruses in human cell-free DNA sequencing experiments and their pathogenic potential during pregnancy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jasper Linthorst
- Dept of Human Genetics and Amsterdam Reproduction & Development research institute, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands, van der Boechorststraat 7, 1081, BT Amsterdam, The Netherlands
| | - Matthijs R A Welkers
- Dept of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam, The Netherlands
| | - Erik A Sistermans
- Dept of Human Genetics and Amsterdam Reproduction & Development research institute, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands, van der Boechorststraat 7, 1081, BT Amsterdam, The Netherlands
| |
Collapse
|
4
|
Zhou X, Li Z, Zhang Z, Zhu L, Liu Q. A rapid and label-free platform for virus enrichment based on electrostatic microfluidics. Talanta 2021; 242:122989. [PMID: 35189409 DOI: 10.1016/j.talanta.2021.122989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022]
Abstract
Virus surveillance and discovery are crucial for virus prediction and outbreak preparedness. Virus samples are frequently bulky and complicated so that effective virus detection remain challenging. Herein, we develop an 3D electrostatic microfluidic platform to rapidly and label-free enrich viruses from bulky samples at low concentrations. The platform consists of double microchannels for streamlining large volume processing and electrodes for enriching viruses by electrostatic interaction. The trajectories of simulation show that particle is successfully enriched under different forces of electrostatic field and different sample flow rates. We demonstrate that the electrostatic microfluidic platform can increase the limit of detection in 100-fold higher based on real-time PCR quantified analysis. Our design thus provides a simple, rapid, label-free and high-throughput viruses concentration platform and would thus have significant utility for various viral detection.
Collapse
Affiliation(s)
- Xiaoxiang Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing, 210096, PR China
| | - Zhanping Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing, 210096, PR China
| | - Zhen Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing, 210096, PR China
| | - Libo Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing, 210096, PR China
| | - Quanjun Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2, Sipailou, Nanjing, 210096, PR China.
| |
Collapse
|