1
|
Dong H, Tang R, Hu Y, Zhong S, Luo J. Intrauterine adhesions assessment by photoacoustic imaging versus high frequency ultrasound imaging in rats. Biochem Biophys Res Commun 2024; 741:151037. [PMID: 39615204 DOI: 10.1016/j.bbrc.2024.151037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/11/2024]
Abstract
OBJECTIVE To compare the sensitivity of photoacoustic imaging (PAI) in the detection of Intrauterine adhesions (IUA) at different grades with that of high frequency ultrasound (US), and to investigate whether PAI can evaluate IUA noninvasively and quantitatively by monitoring endometrial oxygenation. MATERIALS AND METHODS In vivo high-frequency US/PAI dual-modality imaging was performed in12 rats with IUA and 5 control rats, the monolayer endometrial thickness on US (US-EMT) and the average oxygenation saturation of endometrium on PAI (PA-sO2 Avr) were measured respectively. HE, Masson and immunofluorescence staining were further conducted to investigate the monolayer endometrial thickness (HE-EMT), the number of endometrial glands (HE-EMG), the area ratio of endometrial fibrosis (FAr) and the mean fluorescence intensity of Vascular endothelial growth factor (VEGF) in endometrium (VEGF-MFI). The correlation was analyzed between US-EMT, PA-sO2 Avr and HE-EMT, HE-EMG, FAr, VEGF-MFI. The diagnostic performance of US and PAI for different grades of IUA was compared. RESULTS Both US-EMT and PA-sO2 Avr were positively correlated with HE-EMT, HE-EMG, and VEGF-MFI, but negatively correlated with FAr (r = 0.745, 0.608, 0.875, -0.820 and 0.911, 0.756, 0.942, -0.903, respectively). Importantly, the area under the curve (AUC) for detecting stage F1 by PAI was significantly higher than that by US (0.983 vs. 0.625, P = 0.031). No significant difference in the AUC for detecting stage F2 and F3 between PAI and US (0.990 vs 0.987, P = .756; 1.0 vs 1.0, P > .99). CONCLUSION PAI can noninvasively and quantitatively evaluate IUA by monitoring endometrial oxygenation, it shows a higher diagnostic performance than US in detecting IUA, especially mild IUA.
Collapse
Affiliation(s)
- Hongmei Dong
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, China
| | - Rui Tang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ultrasound Molecular Imaging, Chongqing, China
| | - Yanli Hu
- Department of Ultrasound, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shigen Zhong
- Department of Ultrasound, Chongqing General Hospital, Chongqing University, China
| | - Jie Luo
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Wang Z, Gu Y, Qu Y, Huang X, Sun T, Wu W, Hu Q, Chen X, Li Y, Zhao H, Hu Y, Wu B, Xu J. Prevention of Intrauterine Adhesion with Platelet-Rich Plasma Double-Network Hydrogel. Adv Biol (Weinh) 2024:e2400336. [PMID: 39673358 DOI: 10.1002/adbi.202400336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/30/2024] [Indexed: 12/16/2024]
Abstract
Intrauterine adhesion (IUA) can negatively impact on pregnancy outcomes, leading to reduced pregnancy rates, secondary infertility, and an increased risk of pregnancy complications. Studies have shown that the application of platelet-rich plasma (PRP) in IUA patients is effective. However, the clinical readhesive rate of IUA after treatment is still high, especially in severe cases. Platelet-rich plasma double-network hydrogel (DN gel) is an engineered PRP double network hydrogel, which is a sodium alginate (SA) based PRP hydrogel with egg carton ion cross-linking and fibrin double network. The results of this study show that intrauterine injection of DN gel has a better effect on promoting endometrial regeneration and enhancing endometrial receptivity than PRP gel. The mechanism is analyzed through single-cell sequencing, which may be achieved by increasing the expression of neutrophils (Neut), natural killer cells (NK), and type I classical dendritic cells (cDC1) in the endometrium and inhibiting the infiltration of M2 macrophages. Overall, based on the good healing efficiency and good biocompatibility of DN gel, it is expected to become a method of treating IUA with better efficacy and faster clinical translation.
Collapse
Affiliation(s)
- Zhuomin Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Ying Gu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yiyuan Qu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xujia Huang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Tao Sun
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Wei Wu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Department of Assisted Reproduction, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, 310006, China
| | - Qianyu Hu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xiao Chen
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yu Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Huafei Zhao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yingying Hu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Bingbing Wu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jian Xu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Department of Assisted Reproduction, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, 310006, China
| |
Collapse
|
3
|
Jia M, Wang J, Lin C, Zhang Q, Xue Y, Huang X, Ren Y, Chen C, Liu Y, Xu Y. Hydrogel Strategies for Female Reproduction Dysfunction. ACS NANO 2024; 18:30132-30152. [PMID: 39437800 DOI: 10.1021/acsnano.4c05634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Infertility is an important issue for human reproductive health, with over half of all cases of infertility associated with female factors. Dysfunction of the complex female reproductive system may cause infertility. In clinical practice, female infertility is often treated with oral medications and/or surgical procedures, and ultimately with assisted reproductive technologies. Owing to their excellent biocompatibility, low immunogenicity, and adjustable mechanical properties, hydrogels are emerging as valuable tools in the reconstruction of organ function, supplemented by tissue engineering techniques to increase their structure and functionality. Hydrogel-based female reproductive reconstruction strategies targeting the pathological mechanisms of female infertility may provide alternatives for the treatment of ovarian, endometrium/uterine, and fallopian tube dysfunction. In this review, we provide a general introduction to the basic physiology and pathology of the female reproductive system, the limitations of current infertility treatments, and the lack of translation from animal models to human reproductive physiology. We further provide an overview of the current and future potential applications of hydrogels in the treatment of female reproductive system dysfunction, highlighting the great prospects of hydrogel-based strategies in the field of translational medicine, along with the significant challenges to be overcome.
Collapse
Affiliation(s)
- Minxuan Jia
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jiamin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- The Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong 510080, China
| | - Chubing Lin
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Qingyan Zhang
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- The Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong 510080, China
| | - Yueguang Xue
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xin Huang
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yan Ren
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Chunying Chen
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Ying Liu
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yanwen Xu
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- The Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong 510080, China
| |
Collapse
|
4
|
Peng X, Wang T, Dai B, Zhu Y, Ji M, Yang P, Zhang J, Liu W, Miao Y, Liu Y, Wang S, Sun J. Gene Therapy for Inflammatory Cascade in Intrauterine Injury with Engineered Extracellular Vesicles Hybrid Snail Mucus-enhanced Adhesive Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2410769. [PMID: 39454114 DOI: 10.1002/advs.202410769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Indexed: 10/27/2024]
Abstract
Early hyper-inflammation caused by intrauterine injury triggered subsequent intrauterine adhesion (IUA). STAT1-mediated M1 macrophages are confirmed to secrete pro-inflammatory cytokines to accelerate inflammatory cascade and IUA formation by multi-omics analysis and experimental verification. However, clinically used hyaluronic acid (HA) hydrogels are prone to slip out of injury sites due to poor bio-adhesion properties. Therefore, there are still challenges in applying hydrogels for M1 macrophage intervention in IUA treatment. Herein, an engineered extracellular vesicles (EVs) hybrid snail mucus (SM)-enhanced adhesive hydrogels to improve bio-adhesion property is fabricated and M1 macrophage intervention through targeting delivery and STAT1 silencing is achieved. First, inspired by the high bio-adhesion capacity of SM, SM and gelatin methacrylate (GelMA) solution are mixed to construct GelMA/SM (GS) hydrogel. Then, folic acid-modified extracellular vesicles (FA-EVs) are synthesized for targeting the delivery of STAT1-siRNA. Upon injection of FA-EVs hybrid GS hydrogel into the uterine cavity, a protective hydrogel layer forms on the surface of injury sites and sustains the release of STAT1-siRNA-loaded FA-EVs to curtail M1 macrophages generation through inhibiting STAT1 phosphorylation, resulting in reduction of myofibroblasts activation and collagen deposition. In addition, the pregnancy rate and the number of fetuses in rats treated with this hydrogel were much higher than those in other groups, suggesting that the hydrogel could promote functional endometrial regeneration and restore fertility. Overall, this study presents a promising strategy for employing FA-EVs hybrid adhesive hydrogel with superior bio-adhesion properties and M1 macrophage targeting delivery for IUA treatment and uterus recovery.
Collapse
Affiliation(s)
- Xiaotong Peng
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Tao Wang
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bo Dai
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yiping Zhu
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Mei Ji
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Pusheng Yang
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jiaxin Zhang
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wenwen Liu
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yaxin Miao
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yonghang Liu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, 999078, China
| | - Shuo Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jing Sun
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
5
|
Qi J, Li X, Cao Y, Long Y, Lai J, Yao Y, Meng Y, Wang Y, Chen XD, Vankelecom H, Bian X, Cui W, Sun Y. Locationally activated PRP via an injectable dual-network hydrogel for endometrial regeneration. Biomaterials 2024; 309:122615. [PMID: 38759486 DOI: 10.1016/j.biomaterials.2024.122615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Enhancing the effectiveness of platelet-rich plasma (PRP) for endometrial regeneration is challenging, due to its limited mechanical properties and burst release of growth factors. Here, we proposed an injectable interpenetrating dual-network hydrogel that can locationally activate PRP within the uterine cavity, sustained release growth factors and further address the insufficient therapeutic efficacy. Locational activation of PRP is achieved using the dual-network hydrogel. The phenylboronic acid (PBA) modified methacrylated hyaluronic acid (HAMA) dispersion chelates Ca2+ by carboxy groups and polyphenol groups, and in situ crosslinked with PRP-loaded polyvinyl alcohol (PVA) dispersion by dynamic borate ester bonds thus establishing the soft hydrogel. Subsequently, in situ photo-crosslinking technology is employed to enhance the mechanical performance of hydrogels by initiating free radical polymerization of carbon-carbon double bonds to form a dense network. The PRP-hydrogel significantly promoted the endometrial cell proliferation, exhibited strong pro-angiogenic effects, and down-regulated the expression of collagen deposition genes by inhibiting the TGF-β1-SMAD2/3 pathway in vitro. In vivo experiments using a rat intrauterine adhesion (IUA) model showed that the PRP-hydrogel significantly promoted endometrial regeneration and restored uterine functionality. Furthermore, rats treated with the PRP-hydrogel displayed an increase in the number of embryos, litter size, and birth rate, which was similar to normal rats. Overall, this injectable interpenetrating dual-network hydrogel, capable of locational activation of PRP, suggests a new therapeutic approach for endometrial repair.
Collapse
Affiliation(s)
- Jia Qi
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiaoxiao Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yumeng Cao
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yijing Long
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Junliang Lai
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yejie Yao
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yiwen Meng
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yuan Wang
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, Research Service, South Texas Veterans Health Care System, Audie Murphy VA Medical Center, San Antonio, TX, 78229, USA
| | - Hugo Vankelecom
- Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Xuejiao Bian
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, University of Leuven (KU Leuven), B-3000, Leuven, Belgium
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Yun Sun
- Department of Reproductive Medicine, Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
6
|
Wu J, Fan L, Li L, Zhang Y, Tian Y, Jiang Z, Liu Z, Lu D, Dai Y. Integrated analysis of endometrial stromal cell long noncoding RNA and mRNA expression profiles associated with TGF-β1-induced fibrosis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:952-955. [PMID: 38639033 PMCID: PMC11214950 DOI: 10.3724/abbs.2024052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Affiliation(s)
- Jianhong Wu
- Department of GynecologyBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijing100026China
| | - Linyuan Fan
- Department of GynecologyBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijing100026China
| | - Lin Li
- Central LaboratoryBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijing100026China
| | - Yudi Zhang
- Department of GynecologyBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijing100026China
| | - Yucui Tian
- Department of GynecologyBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijing100026China
| | - Ziwen Jiang
- Department of GynecologyBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijing100026China
| | - Zhaohui Liu
- Department of GynecologyBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijing100026China
| | - Dan Lu
- Department of GynecologyBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijing100026China
| | - Yinmei Dai
- Department of GynecologyBeijing Obstetrics and Gynecology HospitalCapital Medical UniversityBeijing Maternal and Child Health Care HospitalBeijing100026China
| |
Collapse
|
7
|
Yang H, Zhang W, Fang J, Tang Z, Zhou Y, Hu H, Miao M, Yao Y. Intrauterine infusion of platelet-rich plasma improves fibrosis by transforming growth factor beta 1/Smad pathway in a rat intrauterine adhesion model. Reprod Biol 2024; 24:100882. [PMID: 38604016 DOI: 10.1016/j.repbio.2024.100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
This study aims to elucidate the effects of Platelet-rich plasma (PRP) in fibrosis development in intrauterine adhesion (IUA), and the associated underlying mechanisms are also explored, which are expected to be a potential therapeutic scheme for IUA. In this research, PRP was obtained and prepared from the peripheral venous blood of rats. A rat model was induced by mechanical injury. Further, PRP was directly injected into the uterus for treatment. The appearance and shape of the uterus were assessed based on the tissues harvested. The fibrosis biomarker levels were analyzed. The transforming growth factor beta 1 (TGF-β1) and Mothers against decapentaplegic homolog 7 (Smad7) levels, the phosphorylation of Smad2 (p-Smad2), and the phosphorylation of Smad3 (p-Smad3) were analyzed, and the molecular mechanism was investigated by rescue experiments. It was found that PRP improved the appearance and shape of the uterus in IUA and increased endometrial thickness and gland numbers. The administration of PRP resulted in a decrease in the expressions of fibrosis markers including collagen I, α-SMA, and fibronectin. Furthermore, PRP increased Smad7 levels and decreased TGF-β1 levels, p-Smad2, and p-Smad3. Meanwhile, administration of TGF-β1 activator reversed the therapeutic effects of PRP in IUA. Collectively, the intrauterine infusion of PRP can promote endometrial damage recovery and improve endometrial fibrosis via the TGF-β1/Smad pathway. Hence, PRP can be a potential therapeutic strategy for IUA.
Collapse
Affiliation(s)
- Hongwen Yang
- Shenzhen Futian District Maternity & Child Healthcare Hospital, 2002, Jintian Road, Futian District, Shenzhen, China.
| | - Wenmin Zhang
- Shenzhen Futian District Maternity & Child Healthcare Hospital, 2002, Jintian Road, Futian District, Shenzhen, China
| | - Jingchuan Fang
- Shenzhen Futian District Maternity & Child Healthcare Hospital, 2002, Jintian Road, Futian District, Shenzhen, China
| | - Zhihan Tang
- University of South China, 28 West Changsheng Road, Hengyang, Huan, China
| | - Yanni Zhou
- Shenzhen Futian District Maternity & Child Healthcare Hospital, 2002, Jintian Road, Futian District, Shenzhen, China
| | - Hongzhen Hu
- Shenzhen Futian District Maternity & Child Healthcare Hospital, 2002, Jintian Road, Futian District, Shenzhen, China
| | - Miao Miao
- Shenzhen Futian District Maternity & Child Healthcare Hospital, 2002, Jintian Road, Futian District, Shenzhen, China
| | - Yu Yao
- Shenzhen Futian District Maternity & Child Healthcare Hospital, 2002, Jintian Road, Futian District, Shenzhen, China
| |
Collapse
|
8
|
Cao Y, Qi J, Wang J, Chen L, Wang Y, Long Y, Li B, Lai J, Yao Y, Meng Y, Yu X, Chen X, Ng LG, Li X, Lu Y, Cheng X, Cui W, Sun Y. Injectable "Homing-Like" Bioactive Short-Fibers for Endometrial Repair and Efficient Live Births. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306507. [PMID: 38504456 PMCID: PMC11132084 DOI: 10.1002/advs.202306507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/14/2023] [Indexed: 03/21/2024]
Abstract
The prevalence of infertility caused by endometrial defects is steadily increasing, posing a significant challenge to women's reproductive health. In this study, injectable "homing-like" bioactive decellularized extracellular matrix short-fibers (DEFs) of porcine skin origin are innovatively designed for endometrial and fertility restoration. The DEFs can effectively bind to endometrial cells through noncovalent dipole interactions and release bioactive growth factors in situ. In vitro, the DEFs effectively attracted endometrial cells through the "homing-like" effect, enabling cell adhesion, spreading, and proliferation on their surface. Furthermore, the DEFs effectively facilitated the proliferation and angiogenesis of human primary endometrial stromal cells (HESCs) and human umbilical vein endothelial cells (HUVECs), and inhibited fibrosis of pretreated HESCs. In vivo, the DEFs significantly accelerated endometrial restoration, angiogenesis, and receptivity. Notably, the deposition of endometrial collagen decreased from 41.19 ± 2.16% to 14.15 ± 1.70% with DEFs treatment. Most importantly, in endometrium-injured rats, the use of DEFs increased the live birth rate from 30% to an impressive 90%, and the number and development of live births close to normal rats. The injectable "homing-like" bioactive DEFs system can achieve efficient live births and intrauterine injection of DEFs provides a new promising clinical strategy for endometrial factor infertility.
Collapse
Affiliation(s)
- Yumeng Cao
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Jia Qi
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Juan Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Liang Chen
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Yuan Wang
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Yijing Long
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Boyu Li
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Junliang Lai
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Yejie Yao
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Yiwen Meng
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Xiaohua Yu
- Hangzhou Phil Stone Biotech Co., Ltd.HangzhouZhejiang311215P. R. China
| | - Xiao‐Dong Chen
- Department of Comprehensive DentistryUniversity of Texas Health Science Center at San AntonioSan AntonioTX78229USA
- Research ServiceSouth Texas Veterans Health Care SystemAudie Murphy VA Medical CenterSan AntonioTX78229USA
| | - Lai Guan Ng
- Shanghai Immune Therapy InstituteShanghai Jiao Tong University School of Medicine affiliated Renji HospitalShanghai200127P. R. China
| | - Xinyu Li
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Yao Lu
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Xiaoyue Cheng
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Yun Sun
- Department of Reproductive Medicine, Ren Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200135P. R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghai200135P. R. China
| |
Collapse
|
9
|
Sun H, Dong J, Fu Z, Lu X, Chen X, Lei H, Xiao X, Chen S, Lu J, Su D, Xiong Y, Fang Z, Mao J, Chen L, Wang X. TSG6-Exo@CS/GP Attenuates Endometrium Fibrosis by Inhibiting Macrophage Activation in a Murine IUA Model. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308921. [PMID: 38588501 DOI: 10.1002/adma.202308921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Intrauterine adhesion (IUA) is characterized by the formation of fibrous scar tissue within the uterine cavity, which significantly impacts female reproductive health and even leads to infertility. Unfortunately, severe cases of IUA currently lack effective treatments. This study presents a novel approach that utilizes tumor necrosis factor-(TNF) stimulated gene 6 (TSG6)-modified exosomes (Exos) in conjunction with an injectable thermosensitive hydrogel (CS/GP) to mitigate the occurrence of IUA by reducing endometrium fibrosis in a mouse IUA model. This study demonstrate that TSG6-modified Exos effectively inhibits the activation of inflammatory M1-like macrophages during the initial stages of inflammation and maintains the balance of macrophage phenotypes (M1/M2) during the repair phase. Moreover, TSG6 inhibits the interaction between macrophages and endometrial stromal fibroblasts, thereby preventing the activation of stromal fibroblasts into myofibroblasts. Furthermore, this research indicates that CS/GP facilitates the sustained release of TSG6-modified Exos, leading to a significant reduction in both the manifestations of IUA and the extent of endometrium fibrosis. Collectively, through the successful construction of CS/GP loaded with TSG6-modified Exos, a reduction in the occurrence and progression of IUA is achieved by mitigating endometrium fibrosis. Consequently, this approach holds promise for the treatment of IUA.
Collapse
Affiliation(s)
- Huijun Sun
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Jie Dong
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Zhaoyue Fu
- Department of Immunology, School of Basic Medicine, Air Force Medical University, No.169 West Changle Road, Xi'an, 710038, China
| | - Xueyan Lu
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Xutao Chen
- Department of Immunology, School of Basic Medicine, Air Force Medical University, No.169 West Changle Road, Xi'an, 710038, China
| | - Hui Lei
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Xifeng Xiao
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Shuqiang Chen
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Jie Lu
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Danjie Su
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Yujing Xiong
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
- Department of Immunology, School of Basic Medicine, Air Force Medical University, No.169 West Changle Road, Xi'an, 710038, China
| | - Zheng Fang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Jiaqin Mao
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| | - Lihua Chen
- Department of Immunology, School of Basic Medicine, Air Force Medical University, No.169 West Changle Road, Xi'an, 710038, China
| | - Xiaohong Wang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Air Force Medical University, No.1 Xinsi Road, Xi'an, 710038, China
| |
Collapse
|
10
|
Xiong Z, Hu Y, Jiang M, Liu B, Jin W, Chen H, Yang L, Han X. Hypoxic bone marrow mesenchymal stem cell exosomes promote angiogenesis and enhance endometrial injury repair through the miR-424-5p-mediated DLL4/Notch signaling pathway. PeerJ 2024; 12:e16953. [PMID: 38406291 PMCID: PMC10894593 DOI: 10.7717/peerj.16953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
Background Currently, bone marrow mesenchymal stem cells (BMSCs) have been reported to promote endometrial regeneration in rat models of mechanically injury-induced uterine adhesions (IUAs), but the therapeutic effects and mechanisms of hypoxic BMSC-derived exosomes on IUAs have not been elucidated. Objective To investigate the potential mechanism by which the BMSCS-derived exosomal miR-424-5p regulates IUA angiogenesis through the DLL4/Notch signaling pathway under hypoxic conditions and promotes endometrial injury repair. Methods The morphology of the exosomes was observed via transmission electron microscopy, and the expression of exosome markers (CD9, CD63, CD81, and HSP70) was detected via flow cytometry and Western blotting. The expression of angiogenesis-related genes (Ang1, Flk1, Vash1, and TSP1) was detected via RT‒qPCR, and the expression of DLL4/Notch signaling pathway-related proteins (DLL4, Notch1, and Notch2) was detected via Western blotting. Cell proliferation was detected by a CCK-8 assay, and angiogenesis was assessed via an angiogenesis assay. The expression of CD3 was detected by immunofluorescence. The endometrial lesions of IUA rats were observed via HE staining, and the expression of CD3 and VEGFA was detected via immunohistochemistry. Results Compared with those in exosomes from normoxic conditions, miR-424-5p was more highly expressed in the exosomes from hypoxic BMSCs. Compared with those in normoxic BMSC-derived exosomes, the proliferation and angiogenesis of HUVECs were significantly enhanced after treatment with hypoxic BMSC-derived exosomes, and these effects were weakened after inhibition of miR-424-5p. miR-424-5p can target and negatively regulate the expression of DLL4, promote the expression of the proangiogenic genes Ang1 and Flk1, and inhibit the expression of the antiangiogenic genes Vash1 and TSP1. The effect of miR-424-5p can be reversed by overexpression of DLL4. In IUA rats, treatment with hypoxic BMSC exosomes and the miR-424-5p mimic promoted angiogenesis and improved endometrial damage. Conclusion The hypoxic BMSC-derived exosomal miR-424-5p promoted angiogenesis and improved endometrial injury repair by regulating the DLL4/Notch signaling pathway, which provides a new idea for the treatment of IUAs.
Collapse
Affiliation(s)
- Zhenghua Xiong
- Department of Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Gynecology, Yan’an Hospital Affiliated to Kunming Medical University/Yan’an Hospital of Kunming City, Kunming, Yunnan, China
| | - Yong Hu
- Department of Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Min Jiang
- Department of Gynecology, Women and Children’s Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Beibei Liu
- Department of Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Wenjiao Jin
- Department of Gynecology, Yan’an Hospital Affiliated to Kunming Medical University/Yan’an Hospital of Kunming City, Kunming, Yunnan, China
| | - Huiqin Chen
- Department of Gynecology, Chuxiong Hospital of Traditional Chinese Medicine, Chuxiong, Yunnan, China
| | - Linjuan Yang
- Department of Gynecology and Obstetrics, Baoshan Hospital of Traditional Chinese Medicine, Baoshan, Yunnan, China
| | - Xuesong Han
- Department of Gynecology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Gynecology, Yan’an Hospital Affiliated to Kunming Medical University/Yan’an Hospital of Kunming City, Kunming, Yunnan, China
| |
Collapse
|
11
|
Wang X, Gu Y, Zhang L, Ma J, Xia Y, Wang X. Long noncoding RNAs regulate intrauterine adhesion and cervical cancer development and progression. Semin Cell Dev Biol 2024; 154:221-226. [PMID: 36841649 DOI: 10.1016/j.semcdb.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023]
Abstract
Intrauterine adhesion, one of reproductive system diseases in females, is developed due to endometrial injury, such as infection, trauma, uterine congenital abnormalities and uterine curettage. Intrauterine adhesion affects female infertility and causes several complications, including amenorrhoea, hypomenorrhoea, and recurrent abortion. Cervical cancer is one of the common gynecological tumors and the fourth leading cancer-related death in women worldwide. Although the treatments of cervical cancer have been improved, the advanced cervical cancer patients have a low survival rate due to tumor recurrence and metastasis. The molecular mechanisms of intrauterine adhesion and cervical tumorigenesis have not been fully elucidated. In recent years, long noncoding RNAs (lncRNAs) have been known to participate in intrauterine adhesion and cervical carcinogenesis. Therefore, in this review, we will summarize the role of lncRNAs in regulation of intrauterine adhesion development and progression. Moreover, we will discuss the several lncRNAs in control of cervical oncogenesis and progression. Furthermore, we highlight that targeting lncRNAs could be used for treatment of intrauterine adhesion and cervical cancer.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Yu Gu
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Leichao Zhang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Jingchao Ma
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China
| | - Yong Xia
- Department of Gynecology and Obstetrics, Fuzhou Maternity and Infant Hospital, Fuzhou, Fujian 350301, China
| | - Xueju Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, China.
| |
Collapse
|
12
|
Ding S, Hu Y, Mao P, Lin Q, Yao Z. Study on the Mechanism of Estrogen Regulating Endometrial Fibrosis After Mechanical Injury Via MIR-21-5P/PPARΑ/FAO Axis. Curr Mol Med 2024; 24:516-523. [PMID: 37078352 DOI: 10.2174/1566524023666230420085743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Intrauterine adhesion (IUA) caused by endometrial mechanical injury has been found as a substantial risk factor for female infertility (e.g., induced abortion). Estrogen is a classic drug for the repair of endometrial injury, but its action mechanism in the clinical application of endometrial fibrosis is still unclear. OBJECTIVE To explore the specific action mechanism of estrogen treatment on IUA. METHODS The IUA model in vivo and the isolated endometrial stromal cells (ESCs) model in vitro were built. Then CCK8 assay, Real-Time PCR, Western Blot and Dual- Luciferase Reporter Gene assay were applied to determine the targeting action of estrogen on ESCs. RESULTS It was found that 17β-estradiol inhibited fibrosis of ESCs by down-regulating miR-21-5p level and activating PPARα signaling. Mechanistically, miR-21-5p significantly reduced the inhibitory effect of 17β-estradiol on fibrotic ESCs (ESCs-F) and its maker protein (e.g., α-SMA, collagen I, and fibronectin), where targeting to PPARα 3'- UTR and blocked its activation and transcription, thus lowering expressions of fatty acid oxidation (FAO) associated key enzyme, provoking fatty accumulation and reactive oxygen species (ROS) production, resulting in endometrial fibrosis. Nevertheless, the PPARα agonist caffeic acid counteracted the facilitation action of miR-21-5p on ESCs-F, which is consistent with the efficacy of estrogen intervention. CONCLUSION In brief, the above findings revealed that the miR-21-5p/PPARα signal axis played an important role in the fibrosis of endometrial mechanical injury and suggested that estrogen might be a promising agent for its progression.
Collapse
Affiliation(s)
- Shuning Ding
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunyun Hu
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Peiyu Mao
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Qiu Lin
- Department of Gynaecology and Obstetrics, Quzhou Hospital of TCM, Quzhou, China
| | - Zhitao Yao
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
13
|
Shukla R, Arshee MR, Laws MJ, Flaws JA, Bagchi MK, Wagoner Johnson AJ, Bagchi IC. Chronic exposure of mice to phthalates enhances TGF beta signaling and promotes uterine fibrosis. Reprod Toxicol 2023; 122:108491. [PMID: 37863342 DOI: 10.1016/j.reprotox.2023.108491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Phthalates are synthetic chemicals widely used as plasticizers and stabilizers in various consumer products. Because of the extensive production and use of phthalates, humans are exposed to these chemicals daily. While most studies focus on a single phthalate, humans are exposed to a mixture of phthalates on a regular basis. The impact of continuous exposure to phthalate mixture on uterus is largely unknown. Thus, we conducted studies in which adult female mice were exposed for 6 months to 0.15 ppm and 1.5 ppm of a mixture of phthalates via chow ad libitum. Our studies revealed that consumption of phthalate mixture at 0.15 ppm and 1.5 ppm for 6 months led to a significant increase in the thickness of the myometrial layer compared to control. Further investigation employing RNA-sequencing revealed an elevated transforming growth factor beta (TGF-β) signaling in the uteri of mice fed with phthalate mixture. TGF-β signaling is associated with the development of fibrosis, a consequence of excessive accumulation of extracellular matrix components, such as collagen fibers in a tissue. Consistent with this observation, we found a higher incidence of collagen deposition in uteri of mice exposed to phthalate mixture compared to unexposed controls. Second Harmonic Generation (SHG) imaging showed disorganized collagen fibers and nanoindentation indicated a local increase in uterine stiffness upon exposure to phthalate mixture. Collectively, our results demonstrate that chronic exposure to phthalate mixture can have adverse effects on uterine homeostasis.
Collapse
Affiliation(s)
- Ritwik Shukla
- Departments of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mahmuda R Arshee
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mary J Laws
- Departments of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jodi A Flaws
- Departments of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Milan K Bagchi
- Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Amy J Wagoner Johnson
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Indrani C Bagchi
- Departments of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
14
|
Chen WH, Chen SR, Hu XX, Huang QY, Chen JM, Lin S, Shi QY. Effects of treatment with stem cell-derived extracellular vesicles in preclinical rodent models of intrauterine adhesion: A meta-analysis. Heliyon 2023; 9:e22902. [PMID: 38144338 PMCID: PMC10746437 DOI: 10.1016/j.heliyon.2023.e22902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Background Intrauterine adhesion (IUA) results from serious complications of intrauterine surgery or infection and mostly remains incurable. Small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) have emerged as a potential new approach for the treatment of IUA; however, their impact is not fully understood. Here, we performed a meta-analysis summarizing the effects of sEVs on IUA in preclinical rodent models. Methods This meta-analysis included searches of PubMed, EMBASE, Cochrane, and the Web of Science databases from January 1, 1997, to April 1, 2022, to identify studies reporting the therapeutic effect of sEVs on rodent preclinical animal models of IUA. We compared improvements in endometrial thickness, endometrial gland number, fibrosis area, embryo number, vascular endothelial growth factor (VEGF), transforming growth factor β1 (TGFβ1), and leukemia inhibitory factor (LIF) levels after treatment. Results Our search included 100 citations, of which 7 met the inclusion criteria, representing 231 animals. Compared with that in the control group, the fibrosis area in the sEV-treated group was significantly reduced (standardized mean difference (SMD) = -6.87,95 % confidence interval (CI) = -9.67 to -4.07). The number of glands increased after the intervention (95 % CI, 3.72-7.68; P = 0.000). Endometrial thickness was significantly improved in the sEV-treated group (SMD = 2.57, 95 % CI, 1.62-3.52). Conclusions This meta-analysis is highlighting that sEV treatment can improve the area of endometrial fibrosis, as well as VEGF, and LIF level, in a mouse IUA model. This knowledge of these findings will provide new insights into future preclinical research.
Collapse
Affiliation(s)
- Wei-hong Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Shao-rong Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xin-xin Hu
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Qiao-yi Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jia-ming Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia
| | - Qi-yang Shi
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
15
|
Abstract
The uterine lining (endometrium) regenerates repeatedly over the life span as part of its normal physiology. Substantial portions of the endometrium are shed during childbirth (parturition) and, in some species, menstruation, but the tissue is rapidly rebuilt without scarring, rendering it a powerful model of regeneration in mammals. Nonetheless, following some assaults, including medical procedures and infections, the endometrium fails to regenerate and instead forms scars that may interfere with normal endometrial function and contribute to infertility. Thus, the endometrium provides an exceptional platform to answer a central question of regenerative medicine: Why do some systems regenerate while others scar? Here, we review our current understanding of diverse endometrial disruption events in humans, nonhuman primates, and rodents, and the associated mechanisms of regenerative success and failure. Elucidating the determinants of these disparate repair processes promises insights into fundamental mechanisms of mammalian regeneration with substantial implications for reproductive health.
Collapse
Affiliation(s)
- Claire J Ang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA;
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Taylor D Skokan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA;
| | - Kara L McKinley
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA;
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
16
|
Feng L, Wang L, Ma Y, Duan W, Martin-Saldaña S, Zhu Y, Zhang X, Zhu B, Li C, Hu S, Bao M, Wang T, Zhu Y, Yang F, Bu Y. Engineering self-healing adhesive hydrogels with antioxidant properties for intrauterine adhesion prevention. Bioact Mater 2023; 27:82-97. [PMID: 37006827 PMCID: PMC10063385 DOI: 10.1016/j.bioactmat.2023.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/08/2023] [Accepted: 03/19/2023] [Indexed: 03/31/2023] Open
Abstract
Intrauterine adhesion (IUA) is the fibrosis within the uterine cavity. It is the second most common cause of female infertility, significantly affecting women's physical and mental health. Current treatment strategies fail to provide a satisfactory therapeutic outcome for IUA patients, leaving an enormous challenge for reproductive science. A self-healing adhesive hydrogel with antioxidant properties will be highly helpful in IUA prevention. In this work, we prepare a series of self-healing hydrogels (P10G15, P10G20, and P10G25) with antioxidant and adhesive properties. Those hydrogels exhibit good self-healing properties and can adapt themselves to different structures. They possess good injectability and fit the shape of the human uterus. Moreover, the hydrogels exhibit good tissue adhesiveness, which is desirable for stable retention and therapeutic efficacy. The in vitro experiments using P10G20 show that the adhesive effectively scavenges ABTS+, DPPH, and hydroxyl radicals, rescuing cells from oxidative stress. In addition, P10G20 offers good hemocompatibility and in vitro and in vivo biocompatibility. Furthermore, P10G20 lowers down the in vivo oxidative stress and prevents IUA with less fibrotic tissue and better endometrial regeneration in the animal model. It can effectively downregulate fibrosis-related transforming growth factor beta 1 (TGF-β1) and vascular endothelial growth factor (VEGF). Altogether, these adhesives may be a good alternative for the clinical treatment of intrauterine adhesion.
Collapse
Affiliation(s)
- Luyao Feng
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Liqun Wang
- Department of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Yao Ma
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wanglin Duan
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Sergio Martin-Saldaña
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia-San Sebastián, Spain
| | - Ye Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xianpeng Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bin Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chaowei Li
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shibo Hu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Mingjie Bao
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Ting Wang
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Yuan Zhu
- Department of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
- JXHC Key Laboratory of Fertility Preservation, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
- Corresponding author. Department of Reproductive Health, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China.
| | - Fei Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Corresponding author. School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yazhong Bu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- Corresponding author.
| |
Collapse
|
17
|
Peng X, Zhu Y, Wang T, Wang S, Sun J. Integrative analysis links autophagy to intrauterine adhesion and establishes autophagy-related circRNA-miRNA-mRNA regulatory network. Aging (Albany NY) 2023; 15:8275-8297. [PMID: 37616056 PMCID: PMC10497020 DOI: 10.18632/aging.204969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Intrauterine adhesion (IUA) is a troublesome complication characterized with endometrial fibrosis after endometrial trauma. Increasing number of investigations focused on autophagy and non-coding RNA in the pathogenesis of uterine adhesion, but the underlying mechanism needs to be further studied. METHODS mRNA expression profile and miRNA expression profile were obtained from Gene Expression Omnibus database. The autophagy related genes were low. Venn diagram was used to set the intersection of autophagy genes and DEGs to obtain ARDEGs. Circbank was used to select hub autophagy-related circRNAs based on ARDEMs. Then, the differentially expressed autophagy-related genes, miRNAs and circRNAs were analyzed by functional enrichment analysis, and protein-protein interaction network analysis. Finally, the expression levels of hub circRNAs and hub miRNAs were validated through RT-PCR of clinical intrauterine adhesion samples. In vitro experiments were investigated to explore the effect of hub ARCs on cell autophagy, myofibroblast transformation and collagen deposition. RESULTS 11 autophagy-related differentially expressed genes (ARDEGs) and 41 differentially expressed miRNA (ARDEMs) compared between normal tissues and IUA were identified. Subsequently, the autophagy-related miRNA-mRNA network was constructed and hub ARDEMs were selected. Furthermore, the autophagy-related circRNA-miRNA-mRNA network was established. According to the ranking of number of regulated ARDEMs, hsa-circ-0047959, hsa-circ-0032438, hsa-circ-0047301 were regarded as the hub ARCs. In comparison of normal endometrial tissue, all three hub ARCs were upregulated in IUA tissue. All hub ARDEMs were downregulated except has-miR-320c. CONCLUSIONS In the current study, we firstly constructed autophagy-related circRNA-miRNA-mRNA regulatory network and identified hub ARCs and ARDEMs had not been reported in IUA.
Collapse
Affiliation(s)
- Xiaotong Peng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yiping Zhu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tao Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shuo Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jing Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
18
|
Chen ST, Shi WW, Lin YQ, Yang ZS, Wang Y, Li MY, Li Y, Liu AX, Hu Y, Yang ZM. Embryo-derive TNF promotes decidualization via fibroblast activation. eLife 2023; 12:e82970. [PMID: 37458359 PMCID: PMC10374279 DOI: 10.7554/elife.82970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 07/15/2023] [Indexed: 07/28/2023] Open
Abstract
Decidualization is a process in which endometrial stromal fibroblasts differentiate into specialized secretory decidual cells and essential for the successful establishment of pregnancy. The underlying mechanism during decidualization still remains poorly defined. Because decidualization and fibroblast activation share similar characteristics, this study was to examine whether fibroblast activation is involved in decidualization. In our study, fibroblast activation-related markers are obviously detected in pregnant decidua and under in vitro decidualization. ACTIVIN A secreted under fibroblast activation promotes in vitro decidualization. We showed that arachidonic acid released from uterine luminal epithelium can induce fibroblast activation and decidualization through PGI2 and its nuclear receptor PPARδ. Based on the significant difference of fibroblast activation-related markers between pregnant and pseudopregnant mice, we found that embryo-derived TNF promotes CPLA2α phosphorylation and arachidonic acid release from luminal epithelium. Fibroblast activation is also detected under human in vitro decidualization. Similar arachidonic acid-PGI2-PPARδ-ACTIVIN A pathway is conserved in human endometrium. Collectively, our data indicate that embryo-derived TNF promotes CPLA2α phosphorylation and arachidonic acid release from luminal epithelium to induce fibroblast activation and decidualization.
Collapse
Affiliation(s)
- Si-Ting Chen
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of Education, Guizhou University; College of Animal Science, Guizhou University, Guiyang, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wen-Wen Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yu-Qian Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhen-Shan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ying Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Meng-Yuan Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yue Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ai-Xia Liu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yali Hu
- Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zeng-Ming Yang
- Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of Education, Guizhou University; College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
19
|
Dun S, Liu C, Li N. Changes of Vaginal Microecology of Women with Intrauterine Adhesions. Int J Womens Health 2023; 15:857-867. [PMID: 37283996 PMCID: PMC10239635 DOI: 10.2147/ijwh.s407010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/27/2023] [Indexed: 06/08/2023] Open
Abstract
Background Reproductive tract infection is one of the important causes of intrauterine adhesions (IUA). The evaluation of vaginal microecology could provide significant guidance for the treatment of reproductive tract infection. This study aimed to investigate the correlation between IUA and vaginal microecology. Methods Patients who came to the gynecology department of our hospital from March 2020 to February 2022 and were diagnosed with IUA were selected as the research subjects (n=150). Patients with normal uterine cavity were selected as the control group (n=150). All research subjects underwent hysteroscopy and vaginal microecological examination. The vaginal pH, hydrogen peroxide (H2O2), leukocyte esterase (LE), sialidase (SNA), 3-glucuronidase (GUS), and acetylglucosidase (NAG) of the participants were recorded and analyzed, respectively. Vulvovaginal candidiasis (VVC), trichomonas vaginitis (TV), and bacterial vaginosis (BV) were evaluated and diagnosed separately. Results The incidence of abnormal vaginal microecological morphological and functional indicators in the IUA group was remarkably higher than that in the control group, mainly manifested as relatively high pH value, reduction of Lactobacillus, increased ratio of flora density I, IV and flora diversity I, IV, higher detection rate of TV and BV. In addition, the increase in the positive rate of H2O2, LE, SNA, and NAG were observed in IUA patients. Conclusion Vaginal microecological imbalance is closely related to the occurrence of IUA, which should cause clinical concern.
Collapse
Affiliation(s)
- Sidi Dun
- Department of Obstetrics and Gynecology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, People’s Republic of China
| | - Chunying Liu
- Department of Obstetrics and Gynecology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, People’s Republic of China
| | - Na Li
- Department of Obstetrics and Gynecology, Daqing Oilfield General Hospital, Daqing, Heilongjiang, People’s Republic of China
| |
Collapse
|
20
|
Mansouri-Kivaj N, Nazari A, Esfandiari F, Shekari F, Ghaffari M, Pakzad M, Baharvand H. Homogenous subpopulation of human mesenchymal stem cells and their extracellular vesicles restore function of endometrium in an experimental rat model of Asherman syndrome. Stem Cell Res Ther 2023; 14:61. [PMID: 37013655 PMCID: PMC10071639 DOI: 10.1186/s13287-023-03279-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Asherman syndrome (AS), or intrauterine adhesions, is a main cause of infertility in reproductive age women after endometrial injury. Mesenchymal stem cells (MSCs) and their extracellular vesicles (EVs) are promising candidates for therapies that repair damaged endometria. However, concerns about their efficacy are attributed to heterogeneity of the cell populations and EVs. A homogenous population of MSCs and effective EV subpopulation are needed to develop potentially promising therapeutic options in regenerative medicine. METHODS AS model was induced by mechanical injury in adult rat uteri. Then, the animals were treated immediately with homogeneous population of human bone marrow-derived clonal MSCs (cMSCs), heterogenous parental MSCs (hMSCs), or cMSCs-derived EV subpopulations (EV20K and EV110K). The animals were sacrificed two weeks post-treatment and uterine horns were collected. The sections were taken, and hematoxylin-eosin was used to examine the repair of endometrial structure. Fibrosis was measured by Masson's trichrome staining and α-SMA and cell proliferation by Ki67 immunostaining. The function of the uteri was explored by the result of mating trial test. Expression changes of TNFα, IL-10, VEGF, and LIF were assayed by ELISA. RESULTS Histological analysis indicated fewer glands, thinner endometria, increased fibrotic areas, and decreased proliferation of epithelial and stroma of the uteri in the treated compared with intact and sham-operated animals. However, these parameters improved after transplantation of both types of cMSCs and hMSCs and/or both cryopreserved EVs subpopulations. The cMSCs demonstrated more successful implantation of the embryos in comparison with hMSCs. The tracing of the transplanted cMSCs and EVs showed that they migrated and localized in the uteri. Protein expression analysis results demonstrated downregulation of proinflammatory factor TNFα and upregulation of anti-inflammatory cytokine IL-10, and endometrial receptivity cytokines VEGF and LIF in cMSC- and EV20K-treated animals. CONCLUSION Transplantation of MSCs and EVs contributed to endometrial repair and restoration of reproductive function, likely by inhibition of excessive fibrosis and inflammation, enhancement of endometrial cell proliferation, and regulation of molecular markers related to endometrial receptivity. Compared to classical hMSCs, cMSCs were more efficient than hMSCs in restoration of reproductive function. Moreover, EV20K is more cost-effective and feasible for prevention of AS in comparison with conventional EVs (EV110K).
Collapse
Affiliation(s)
- Nahid Mansouri-Kivaj
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Abdoreza Nazari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marefat Ghaffari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Pakzad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
21
|
Zhuang LL, Wang K, Shen HL, Lin JH, Lu Y, Luo ZY, Wang WR. A comparison of special intrauterine balloons and intrauterine contraceptive devices in the treatment of intrauterine adhesions. Arch Gynecol Obstet 2023; 307:1873-1882. [PMID: 36897397 PMCID: PMC10147804 DOI: 10.1007/s00404-023-06993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
PURPOSE This study aimed to compare the efficacy of a special kind of intrauterine balloon (IUB) and that of an intrauterine contraception device (IUD) for patients with intrauterine adhesions (IUAs) after transcervical resection of adhesion (TCRA). METHODS In this retrospective cohort study, after TCRA, 31 patients received a special IUB, and 38 patients received an IUD. The Fisher exact test, logistic regression method, Kaplan-Meier method and Cox proportional hazards regression model were used for statistical analysis. A two-sided value of P < 0.05 was considered statistically significant. RESULTS The readhesion rate significantly differed between the IUB group and IUD group, at 15.39% and 54.06%, respectively (P = 0.002). For recurrent moderate IUA, patients in the IUB group had lower scores than patients in the IUD group (P = 0.035). There was a significant difference in the intrauterine pregnancy rate of IUA patients in the IUB group and IUD group after treatment, with rates of 55.56% and 14.29%, respectively (P = 0.015). CONCLUSION Patients in the special IUB group had better outcomes than those in the IUD group, which has a certain guiding significance for clinical work.
Collapse
Affiliation(s)
- Lin-Lin Zhuang
- Department of Family Planning, Women and Children's Hospital, School of Medicine, Xiamen University, Siming District, Zhenhai Road, Xiamen, 361005, Fujian, China
| | - Kai Wang
- Department of Family Planning, Women and Children's Hospital, School of Medicine, Xiamen University, Siming District, Zhenhai Road, Xiamen, 361005, Fujian, China
| | - Hai-Lan Shen
- Department of Family Planning, Women and Children's Hospital, School of Medicine, Xiamen University, Siming District, Zhenhai Road, Xiamen, 361005, Fujian, China
| | - Jia-Hui Lin
- Department of Family Planning, Women and Children's Hospital, School of Medicine, Xiamen University, Siming District, Zhenhai Road, Xiamen, 361005, Fujian, China
| | - Ye Lu
- Department of Gynecology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361005, Fujian, China
| | - Zhen-Yu Luo
- Department of Family Planning, Women and Children's Hospital, School of Medicine, Xiamen University, Siming District, Zhenhai Road, Xiamen, 361005, Fujian, China.
| | - Wen-Rong Wang
- Department of Family Planning, Women and Children's Hospital, School of Medicine, Xiamen University, Siming District, Zhenhai Road, Xiamen, 361005, Fujian, China.
| |
Collapse
|
22
|
Bao M, Feng Q, Zou L, Huang J, Zhu C, Xia W. Endoplasmic reticulum stress promotes endometrial fibrosis through the TGF-β/SMAD pathway. Reproduction 2023; 165:171-182. [PMID: 36342661 DOI: 10.1530/rep-22-0294] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
In brief Intrauterine adhesion (IUA) is one of the main causes of female infertility. This study reveals that endoplasmic reticulum stress activation upregulates the TGF-β/SMAD pathway to induce epithelial-mesenchymal transition and promote endometrial fibrosis in an IUA model. Abstract IUA is a common gynecological disease and is a leading cause of female infertility. Mechanical or infectious damage to the endometrial basal layer can lead to endometrial fibrosis, which is the most common cause of IUA. Endoplasmic reticulum stress (ERS), the transforming growth factor beta signaling pathway (TGF-β/SMAD) and epithelial-mesenchymal transition (EMT) are important factors promoting endometrial fibrosis. The purpose of this study was to determine the up- and downstream regulatory relationships of the above three in the process of endometrial fibrosis. The rat IUA model was induced by double injury method and prophylactic injection of the ERS inhibitor 4-phenylbutyric acid (4-PBA) was given in vivo. The ERS activator tunicamycin and the TGF-β/SMAD pathway inhibitor A 83-01 were used in human endometrial epithelial cells (HEECs) in vitro. Masson's trichrome, Sirius red staining, immunohistochemistry, immunofluorescence and Western blot analyses were used to determine ERS, TGF-β/SMAD pathway, EMT and fibrosis markers in the uterine tissue and HEECs of the different treatment groups. In animal experiments, ERS and the TGF-β/SMAD pathway had been activated and EMT occurred in an in vivo model of IUA but was suppressed in animals treated with prophylactic 4-PBA. In in vitro experiments, tunicamycin-treated HEECs had increased the activation of ERS, the abundance of TGF-β/SMAD pathway and fibrosis markers while EMT occurred, but the TGF-β/SMAD pathway and EMT were significantly inhibited in the tunicamycin+A 83-01 group. Our data suggest that increased ERS can induce EMT and promote endometrial fibrosis through the TGF-β/SMAD pathway.
Collapse
Affiliation(s)
- Meng Bao
- Institute of Reproductive Health, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Qiwen Feng
- Institute of Reproductive Health, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Liping Zou
- Institute of Reproductive Health, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jin Huang
- Institute of Reproductive Health, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Changhong Zhu
- Institute of Reproductive Health, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xia
- Institute of Reproductive Health, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Yuan D, Guo T, Qian H, Jin C, Ge H, Zhao Y, Zhu D, Lin M, Wang H, Yu H. Exosomal miR-543 derived from umbilical cord mesenchymal stem cells ameliorates endometrial fibrosis in intrauterine adhesion via downregulating N-cadherin. Placenta 2023; 131:75-81. [PMID: 36521318 DOI: 10.1016/j.placenta.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/09/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Human umbilical cord mesenchymal stem cells (UCMSCs) play an important role in repairing the damaged endometrium of intrauterine adhesion (IUA). Meanwhile, exosomes released by UCMSCs can mediate intercellular communication by delivering miRNAs. It has been shown that miR-543 level was reduced in IUA tissues. However, the role of miR-543 in the progression of IUA remains largely unknown. Therefore, we investigated the role of UCMSCs-derived exosomal miR-543 in IUA. METHODS In this study, human endometrial epithelial cells (hEECs) were treated with TGF-β1 for mimicking endometrial fibrosis in vitro. In addition, the IUA-like mouse model in vivo was established by a dual damage method of curettage and LPS infection. RESULTS The level of miR-543 was markedly reduced in hEECs exposed to TGF-β1 and in endometrium tissues of IUA mice. Additionally, miR-543 could be transferred from UCMSCs to hEECs via exosomes. Meanwhile, exosomal miR-543-derived from UCMSCs significantly reduced the expressions of N-cadherin, α-SMA, fibronectin 1 and elevated the expression of E-cadherin in TGF-β1-treated hEECs. Furthermore, UCMSCs-derived exosomal miR-543 attenuated IUA-induced endometrial fibrosis in vivo, as shown by the decreased N-cadherin, α-SMA and fibronectin 1 protein expressions. DISCUSSION Collectively, UCMSCs-derived exosomal miR-543 was able to prevent endometrial fibrosis both in vitro and in vivo via downregulating N-cadherin. These results may provide an insight into the clinical treatment for IUA.
Collapse
Affiliation(s)
- Donglan Yuan
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Ting Guo
- Department of Laboratory Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Hua Qian
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Chunyan Jin
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Hongshan Ge
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Yinling Zhao
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Dandan Zhu
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Mei Lin
- Department of Laboratory Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Hua Wang
- Department of Obstetrics and Gynecology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, 225300, China.
| |
Collapse
|
24
|
Zou Q, Du X, Zhou L, Yao D, Dong Y, Jin J. A short peptide encoded by long non-coding RNA small nucleolar RNA host gene 6 promotes cell migration and epithelial-mesenchymal transition by activating transforming growth factor-beta/SMAD signaling pathway in human endometrial cells. J Obstet Gynaecol Res 2023; 49:232-242. [PMID: 36396030 DOI: 10.1111/jog.15476] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/08/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Endometrial dysfunction is closely correlated with the development of multiple severe gynecological disorders including intrauterine adhesion. Accumulating evidence supports that some long non-coding RNAs (lncRNAs) have peptide-coding potential. In this text, the peptide-coding ability of lncRNA SNHG6 was examined. Also, the effects of an SNHG6-encoded peptide on the viability and migration of human endometrial stromal cells (hESCs) and human endometrial epithelial cells (hEECs) and related molecular mechanisms were explored. METHODS The peptide-encoding potential of SNHG6 was predicted by FuncPEP and getorf databases and validated by western blot assay. Cell viability was tested by cell counting kit-8 assay. Cell migratory ability was examined by wound healing and transwell migration assays. Protein levels of genes were measured by western blot assay. RESULTS Prediction analysis suggested that SNHG6 had the potential peptide-coding ability and multiple open-reading frames (ORFs). Western blot validated that SNHG6 ORF#1 and ORF#2 could translate into short peptides. SNHG6 ORF#2 overexpression facilitated cell migration and epithelial-mesenchymal transition (EMT) in hESCs and hEECs, while these effects were abrogated by transforming growth factor-beta (TGF-β)/SMAD signaling inhibitor GW788388. Moreover, GW788388 inhibited the increase of p-SMAD2 and p-SMAD3 levels induced by SNHG6 ORF#2 in hESCs. SNHG6 ORF#2-encoded peptide did not influence endometrial stromal and epithelial cell viability. CONCLUSIONS LncRNA SNHG6 ORF#1 and ORF#2 could translate into small peptides and SNHG6 ORF#2 overexpression promoted cell migration and EMT by activating the TGF-β/SMAD pathway in hESCs and hEECs, suggesting the potential roles of SNHG6-encoded peptides in the development of endometrial stromal and epithelial cells and related gynecological diseases.
Collapse
Affiliation(s)
- Qian Zou
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, PR China
| | - Xin Du
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, PR China
| | - Limin Zhou
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, PR China
| | - Dongmei Yao
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, PR China
| | - Yi Dong
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, PR China
| | - Jing Jin
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, PR China
| |
Collapse
|
25
|
Li W, Gu P, Gao B, Zou L, Zhang A, Huang H, Zhao X, Xu D, Cheng C. Characteristics and transcriptomic analysis of scar tissues on the inner uterine cavity wall in patients with intrauterine adhesions. Front Physiol 2022; 13:990009. [PMID: 36620214 PMCID: PMC9815801 DOI: 10.3389/fphys.2022.990009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: It has been previously reported that intrauterine adhesions (IUAs) are the main cause of uterine infertility. However, the histological origin of scar tissue present on the inner wall of the uterine cavity with IUAs has not been previously studied, which is particularly necessary for follow-up research and prevention and treatment. Methods: In this study, myometrium with normal uterus were assigned to the control group and scar tissues with IUAs were assigned to the experimental group. And pathological characteristics and transcriptomic were analyzed between the two groups. Results: We founded no difference was noted in the histological morphology and the α-SMA expression between the experimental and control groups. A total of 698 differentially expressed genes were identified between the two groups. Gene Ontology (GO) analyses revealed that the DEGs were significantly enriched in cell proliferation, AP-1 complex formation, and angiogenesis. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the target genes were significantly enriched in the AGE-RAGE, FOXO and TNF signaling pathway. Discussion: As far as we know, this is the first study to propose that the scar tissues are mainly derived from the myometrium and the first one to report differentially expressed genes in the scar tissues of IUAs.
Collapse
Affiliation(s)
- Waixing Li
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China
| | - Pan Gu
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China,The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Bingsi Gao
- The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Lingxiao Zou
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China
| | - Aiqian Zhang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China
| | - Huan Huang
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China
| | - Xingping Zhao
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China,*Correspondence: Xingping Zhao, ; Dabao Xu,
| | - Dabao Xu
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China,*Correspondence: Xingping Zhao, ; Dabao Xu,
| | - Chunxia Cheng
- Department of Obstetrics and Gynecology, The Third Xiangya Hospital of the Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Hua X, Xu L, Li Q, Zhang M, Chen X, Zhu Y, Xu J, Li J. Deep Grouping Analysis of the Altered Cervical Canal Microbiota in Intrauterine Adhesion Patients. Reprod Sci 2022; 29:3494-3507. [PMID: 35710962 DOI: 10.1007/s43032-022-01006-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022]
Abstract
To deeply analyze the alterations of cervical canal microbiota in intrauterine adhesion (IUA) patients and microbiota's relation to intrauterine adhesion (IUA) severity, we prospectively enrolled 23 consecutive patients diagnosed with mild-to-severe IUA and 8 women with infertility, 3 women with submucous myomas, or 8 women with endometrial polyps, but without IUA, as non_IUA subjects. For deep grouping analysis, these enrolled women were divided into six groups, two groups, and four groups respectively. Cervical mucus was drawn from the cervical canal of each participant. The bacterial composition was identified by 16S rDNA high-throughput sequencing. For analysis of six groups, mild IUA patients had similar cervical canal microbiota diversity and composition with submucous myomas patients. Compared with mild IUA participants, patients with moderate or severe IUA had a significantly lower diversity of bacteria and higher load of Firmicutes. For analysis of two groups, IUA patients had a significantly lower diversity of bacteria and higher load of Firmicutes than non_IUA subjects. KEGG pathway function analysis showed that metabolic pathways, biosynthesis of secondary metabolites, and microbial metabolism in diverse environments were mostly enriched for these cervical canal microbiota in all enrolled patients. The severity of IUA was associated with the altered abundance of phylum Firmicutes/Acinetobacteria or genus Lactobacillus/Gardnerella in the cervical canal. Higher bacterial load but less diversity in the cervical canal may be related with the severity of IUA. The function of these cervical canal microbiota were mostly involved in metabolic pathways.
Collapse
Affiliation(s)
- Xiangdong Hua
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Lu Xu
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Qian Li
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Mi Zhang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Xiyi Chen
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yuan Zhu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China.
| | - Jingyun Li
- Nanjing Maternal and Child Health Medical Institute, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China.
| |
Collapse
|
27
|
Babaei K, Aziminezhad M, Norollahi SE, Vahidi S, Samadani AA. Cell therapy for the treatment of reproductive diseases and infertility: an overview from the mechanism to the clinic alongside diagnostic methods. Front Med 2022; 16:827-858. [PMID: 36562947 DOI: 10.1007/s11684-022-0948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
Infertility is experienced by 8%-12% of adults in their reproductive period globally and has become a prevalent concern. Besides routine therapeutic methods, stem cells are rapidly being examined as viable alternative therapies in regenerative medicine and translational investigation. Remarkable progress has been made in understanding the biology and purpose of stem cells. The affected pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) are further studied for their possible use in reproductive medicine, particularly for infertility induced by premature ovarian insufficiency and azoospermia. Accordingly, this study discusses current developments in the use of some kinds of MSCs such as adipose-derived stem cells, bone marrow stromal cells, umbilical cord MSCs, and menstrual blood MSCs. These methods have been used to manage ovarian and uterine disorders, and each technique presents a novel method for the therapy of infertility.
Collapse
Affiliation(s)
- Kosar Babaei
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Aziminezhad
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
28
|
Zhao Z, Mao X, Zheng Y, Liu Y, Zhao S, Yao S, Xu D, Zhao X. Research progress in the correlation between reproductive tract microbiota and intrauterine adhesion. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:1495-1503. [PMID: 36481627 PMCID: PMC10930615 DOI: 10.11817/j.issn.1672-7347.2022.220130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 12/13/2022]
Abstract
Intrauterine adhesion (IUA) is caused by damage of the basal layer of endometrium, which leads to fibrosis of the endometrium and the formation of adhesion, resulting in partial or complete occlusion of the uterine cavity, abnormal menstruation, infertility or recurrent miscarriage. The prevalence of IUA in women has been increasing in recent years, and the high recurrence rate of moderate to severe IUA makes IUA treatment more challenging. Iatrogenic endometrial injury is the main cause of IUA. However, the incidence of IUA and the severity of IUA vary among patients who have received similar uterine operations, suggesting that there may be other synergistic factors in the development of IUA. There is a certain correlation between the pathogenesis and the microbiota of the gential tract. In many IUA patients, it has been observed that the probiotics such as Lactobacillus in the vagina is significant reduced, and the pathogenic bacteria such as Gardnerella and Prevotella are excessive growth. The reproductive tract microbiota can be involved in the development and progression of IUA via impacting immune function and metabolism.
Collapse
Affiliation(s)
- Zitong Zhao
- Department of Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013.
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China.
| | - Xuetao Mao
- Department of Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013.
| | - Yi Zheng
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Ying Liu
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Siyi Zhao
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Shuoyi Yao
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Dabao Xu
- Department of Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013.
| | - Xingping Zhao
- Department of Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013.
| |
Collapse
|
29
|
Chen M, Yuan L, Jin H, Djurist NR, Zhang X, Liu D. A novel intrauterine barrier for preventing the recurrence of IUA after TCRA procedure. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Zhou L, Zhou L, Wang T. Comparison of the Effects of Hysteroscopic Cold Broad Sword Play Combined with Estrogen and Progestin Sequential Therapy and Drospirenone and Ethinylestradiol Tablets in Patients with Severe Intrauterine Adhesion. Emerg Med Int 2022; 2022:9898228. [PMID: 35959221 PMCID: PMC9357684 DOI: 10.1155/2022/9898228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Objective To compare the effects of hysteroscopic cold broad sword play combined with estrogen and progestin sequential therapy and drospirenone and ethinylestradiol tablets in patients with severe intrauterine adhesion. Methods One hundred and eight patients with severe IUA admitted to our hospital from May 2019 to October 2021 were selected for the study. Patients were divided according to their treatment regimen into group A (n = 54) treated with hysteroscopic cold broad sword play + drospirenone and ethinylestradiol tablets and group B (n = 54) treated with hysteroscopic cold broad sword play + estrogen and progestin sequential therapy. The two groups were compared in terms of perioperative indicators, recovery of uterine cavity status, inflammatory factor (C-reactive protein (CRP), interleukin 6 (IL-6), and interleukin 8 (IL-8)] levels), World Health Organization Quality of Life Brief Scale (WHOQOL-BREF) score, and clinical outcome at 3 months postoperatively. Result After surgery, the duration of abdominal pain and vaginal bleeding was shorter in group A than in group B (P < 0.05). After surgery, the time of menstruation return was shorter in group A than in group B, and the menstrual flow score was higher than in group B (P < 0.05). At 3 months after the surgery, the uterine blood flow index, endometrial thickness, and uterine cavity volume were higher in group A than in group B, and the number of uterine readhesion was lower than in group B (P < 0.05). 3 months after the surgery, the CRP, IL-6, and IL-8 levels decreased in both groups and were lower in group A than in group B (P < 0.05). At 3 months after the surgery, the WHOQOL-BREF scores for each indicator were higher in both groups than before surgery and were higher in group A than in group B (P < 0.05). At 3 months after the surgery, the overall valid rate of group A was 94.44% better than that of group B at 79.63% (P < 0.05). Conclusion The combination of hysteroscopic cold broad sword play with drospirenone and ethinylestradiol tablets has been shown to be more effective than combined estrogen and progestin sequential therapy in the treatment of patients with severe IUA, which significantly improves the post-operative menstrual status and uterine cavity morphology, significantly reduces the level of inflammatory factors in the patient's body, and significantly improves the quality of life, which is of value.
Collapse
Affiliation(s)
- Liping Zhou
- Department of Gynecology, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang 311800, China
| | - Liqin Zhou
- Department of Pharmacy, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang 311800, China
| | - Tingting Wang
- Department Obsterics and Gynecology, Zhuji Maternal and Child Health Hospital, Zhuji, Zhejiang 311800, China
| |
Collapse
|
31
|
Kong Y, Liu Z, Xiao Q, Wu F, Hu L, Deng X, Chen T. Protective Effects of Engineered Lactobacillus crispatus on Intrauterine Adhesions in Mice via Delivering CXCL12. Front Immunol 2022; 13:905876. [PMID: 35734171 PMCID: PMC9207254 DOI: 10.3389/fimmu.2022.905876] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Endometrial injury is the main cause of intrauterine adhesions (IUA), and there is currently no effective prevention and treatment. Immune cells play an important role in damage repair by sensing the change in the microenvironment. Exogenous CXCL12 can promote tissue regeneration and repair by recruiting immune cells, but its effect and possible mechanism on endometrial regeneration and repair have not been reported. In the present study, we constructed an engineered a Lactobacillus crispatus strain by transforming a pMG36e plasmid carrying a CXCL12 gene into the bacterium, and developed two animal models, the intrauterine adhesion mice with or without diabetes to evaluate the positive effects of this strain on the prevention of IUA after accepting intrauterine surgery in normal and diabetic mice. The results showed that vaginal application of L. crispatus-pMG36e-mCXCL12 strains significantly diminished the levels of pro-inflammatory factors interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α) in serum and uterine tissues of IUA mice, and resulted in the inhibition of the inflammatory (toll-like receptor 4/nuclear factor-κb, TLR4/NF-κB) and fibrotic (transforming growth factor-β1/smads, TGF-β1/Smads) signalling pathways in the uterine tissues. The high-throughput sequencing results further indicated that treatment with L. crispatus-pMG36e-mCXCL12 strains greatly increased the abundance of Lactobacillus spp. and reduced that of the pathogenic Klebsiella spp. in IUA mice. Furthermore, among intrauterine adhesion mice with diabetes, we obtained similar results to non-diabetic mice, that is, L.crispatus-pMG36e-mCXCL12 significantly improved fibrosis and inflammation in the uterine cavity of diabetic mice, and restored the vaginal microbiota balance in diabetic mice. Therefore, we speculated that vaginal administration of L. crispatus-pMG36e-mCXCL12 strains can effectively alleviate intrauterine adhesions by restoring the microbial balance and reducing inflammation and fibrosis caused by surgery.
Collapse
Affiliation(s)
- Yao Kong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Tingtao Chen, ; Zhaoxia Liu,
| | - Qin Xiao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fei Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lijuan Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaorong Deng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tingtao Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- National Engineering Research Center for Bioengineering Drugs and The Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
- *Correspondence: Tingtao Chen, ; Zhaoxia Liu,
| |
Collapse
|
32
|
Chen Y, Sun D, Shang D, Jiang Z, Miao P, Gao J. miR-223-3p alleviates TGF-β-induced epithelial-mesenchymal transition and extracellular matrix deposition by targeting SP3 in endometrial epithelial cells. Open Med (Wars) 2022; 17:518-526. [PMID: 35350836 PMCID: PMC8919841 DOI: 10.1515/med-2022-0424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/26/2021] [Accepted: 12/15/2021] [Indexed: 01/06/2023] Open
Abstract
Intrauterine adhesion (IUA) is the clinical manifestation of endometrial fibrosis. The dysregulation of microRNAs (miRNAs) has been confirmed to implicate in a diversity of human diseases, including IUA. Nevertheless, the specific function of miR-223-3p in IUA remains to be clarified. Reverse transcription quantitative polymerase chain reaction analysis displayed the downregulation of miR-223-3p in IUA tissues and endometrial epithelial cells (EECs). Results from wound healing assay, Transwell assay and western blotting showed that TGF-β facilitated the migration and invasion of EECs and induced epithelial-mesenchymal transition (EMT) process as well as extracellular matrix (ECM) deposition. Overexpression of miR-223-3p in EECs was shown to suppress the effects induced by TGF-β. Bioinformatics analysis and luciferase reporter assay revealed the binding relation between miR-223-3p and SP3. SP3 was highly expressed in IUA and its expression was inversely correlated with miR-223-3p expression in IUA tissue samples. Additionally, upregulation of SP3 reversed the influence of miR-223-3p on the phenotypes of EECs. In conclusion, miR-223-3p alleviates TGF-β-induced cell migration, invasion, EMT process and ECM deposition in EECs by targeting SP3.
Collapse
Affiliation(s)
- Yanling Chen
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Dongyan Sun
- Department of Gynecology, Maternity and Child Health Care Hospital of Hubei Province, 745 Wuluo Road, Wuchang District, Wuhan 430000, Hubei, China
| | - Di Shang
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Zhihe Jiang
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| | - Pan Miao
- Yangtze University Health Science Center, Jingzhou 430199, Hubei, China
| | - Jian Gao
- Department of Obstetrics and Gynecology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430072, Hubei, China
| |
Collapse
|
33
|
Sun D, Mao X, Zhang A, Gao B, Huang H, Burjoo A, Xu D, Zhao X. Pregnancy Patterns Impact Live Birth Rate for Patients With Intrauterine Adhesions After Hysteroscopic Adhesiolysis: A Retrospective Cohort Study. Front Physiol 2022; 13:822845. [PMID: 35360249 PMCID: PMC8963734 DOI: 10.3389/fphys.2022.822845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The pregnancy patterns and other factors of live birth for patients with intrauterine adhesions (IUAs) were identified by analyzing the clinical features of pre-, intra-, and post-hysteroscopic adhesiolysis (HA). Design A total of 742 patients with IUAs who wanted to become pregnant underwent HA from January 2017 to May 2018 at the Third Xiangya Hospital of Central South University. The patient follow-up period was 2 years post-HA. A logistic regression was performed to analyze the clinical characteristics associated with a live birth for patients with IUAs. Pre-operative clinical indicators included age, gravidity, parity, abortion, IUA recurrence, menstrual patterns, disease course. Intraoperative clinical features assessed in the last operation were uterine cavity length, IUA appearance, IUA area, number of visible uterine cornua, number of visible tubal ostia, AFS scores. Pregnancy patterns were post-hysteroscopic adhesiolysis features. Results Among the 742 IUA patients, 348 (46.9%) had a live birth and 394 (53.1%) did not. A bivariate and binary logistic regression analysis showed that IUA patients’ pregnancy patterns, age, number of visible tubal ostia noted by a second-look hysteroscopy, and American Fertility Society (AFS) scores were significantly related to the live birth rate (P < 0.05). Conclusions Pregnancy patterns, age, number of visible tubal ostia, and AFS scores were significantly related to the live birth rate and may be considered potential predictors of the live birth rate in IUA patients. The indications of assisted reproductive technology (ART) might be a better choice for patients with recurrent IUAs.
Collapse
Affiliation(s)
- Dan Sun
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xuetao Mao
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Aiqian Zhang
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Bingsi Gao
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Huan Huang
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Arvind Burjoo
- Department of Obstetrics and Gynaecology, Bruno Cheong Hospital, Central Flacq, Mauritius
| | - Dabao Xu
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xingping Zhao
- Department of Gynecology, Third Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Xingping Zhao,
| |
Collapse
|
34
|
Huang J, Li Q, Yuan X, Liu Q, Zhang W, Li P. Intrauterine infusion of clinically graded human umbilical cord-derived mesenchymal stem cells for the treatment of poor healing after uterine injury: a phase I clinical trial. Stem Cell Res Ther 2022; 13:85. [PMID: 35241151 PMCID: PMC8895869 DOI: 10.1186/s13287-022-02756-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
Background Intrauterine adhesion and cesarean scar diverticulum are the main complications of poor healing after uterine injury. Human umbilical cord MSCs transplantation has been regarded as the most potential treatment in the clinic, the safety and efficacy of which in the clinic, however, remains unclear. Methods In this study, ten patients were enrolled: six with intrauterine adhesion and four with cesarean scar diverticulum. All the patients were injected with human umbilical cord MSCs twice into the uterus. Beside the chest X-ray, ECG and abdominal ultrasound, many laboratory tests including blood routine, liver and renal function, ovarian function, tumor biomarkers, and immune function were used to estimate the safe after stem cell transplanted. In addition, the efficacy of stem cell transplanted was shown by the endometrial thickness, the volume of the uterus, and cesarean scar diverticulum based on 3D ultrasound imaging. Results We found that all results of these laboratory tests were normal in these enrolled patients before and after cell injection. Meanwhile, the results of the chest X-ray and ECG were also normal in the treatment process. The abdominal ultrasound showed that the size of the left and right kidneys was inconsistent in one patient after cell therapy, while those of other patients were normal. In addition, endometrial thickness, the volume of the uterus, and cesarean scar diverticulum showed an improving tendency, but no significant difference was noted. Conclusion In summary, intrauterine injection of clinically graded human umbilical cord MSCs was safe for poor healing after uterus injury. Trial registration NCT03386708. Registered 27 December 2017, https://clinicaltrials.gov/ct2/show/NCT03386708?cond=CSD&cntry=CN&draw=2&rank=2 Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02756-9.
Collapse
Affiliation(s)
- Jingrui Huang
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, 410008, Hunan, People's Republic of China
| | - Qi Li
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xiaohua Yuan
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Qiaoshu Liu
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Weishe Zhang
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, 410008, Hunan, People's Republic of China
| | - Ping Li
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
35
|
Li X, Xu F, Sha X, Chen X, Pan QH, He X, Zhang H, Zheng Y. Biochemical indicators and vaginal microecological abnormalities indicate the occurrence of intrauterine adhesions. MEDICINE IN MICROECOLOGY 2022. [DOI: 10.1016/j.medmic.2021.100050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
36
|
Xu C, Bao M, Fan X, Huang J, Zhu C, Xia W. EndMT: New findings on the origin of myofibroblasts in endometrial fibrosis of intrauterine adhesions. Reprod Biol Endocrinol 2022; 20:9. [PMID: 34996477 PMCID: PMC8739974 DOI: 10.1186/s12958-022-00887-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Intrauterine adhesion (IUA) is one of the leading causes of infertility and the main clinical challenge is the high recurrence rate. The key to solving this dilemma lies in elucidating the mechanisms of endometrial fibrosis. The aim of our team is to study the mechanism underlying intrauterine adhesion fibrosis and the origin of fibroblasts in the repair of endometrial fibrosis. METHODS Our experimental study involving an animal model of intrauterine adhesion and detection of fibrosis-related molecules. The levels of molecular factors related to the endothelial-to-mesenchymal transition (EndMT) were examined in a rat model of intrauterine adhesion using immunofluorescence, immunohistochemistry, qPCR and Western blot analyses. Main outcome measures are levels of the endothelial marker CD31 and the mesenchymal markers alpha-smooth muscle actin (α-SMA) and vimentin. RESULTS Immunofluorescence co-localization of CD31 and a-SMA showed that 14 days after moulding, double positive cells for CD31 and a-SMA could be clearly observed in the endometrium. Decreased CD31 levels and increased α-SMA and vimentin levels indicate that EndMT is involved in intrauterine adhesion fibrosis. CONCLUSIONS Endothelial cells promote the emergence of fibroblasts via the EndMT during the endometrial fibrosis of intrauterine adhesions.
Collapse
Affiliation(s)
- Chengcheng Xu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Meng Bao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Xiaorong Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Jin Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Changhong Zhu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Wei Xia
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
37
|
Chen JM, Huang QY, Zhao YX, Chen WH, Lin S, Shi QY. The Latest Developments in Immunomodulation of Mesenchymal Stem Cells in the Treatment of Intrauterine Adhesions, Both Allogeneic and Autologous. Front Immunol 2021; 12:785717. [PMID: 34868069 PMCID: PMC8634714 DOI: 10.3389/fimmu.2021.785717] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Intrauterine adhesion (IUA) is an endometrial fibrosis disease caused by repeated operations of the uterus and is a common cause of female infertility. In recent years, treatment using mesenchymal stem cells (MSCs) has been proposed by many researchers and is now widely used in clinics because of the low immunogenicity of MSCs. It is believed that allogeneic MSCs can be used to treat IUA because MSCs express only low levels of MHC class I molecules and no MHC class II or co-stimulatory molecules. However, many scholars still believe that the use of allogeneic MSCs to treat IUA may lead to immune rejection. Compared with allogeneic MSCs, autologous MSCs are safer, more ethical, and can better adapt to the body. Here, we review recently published articles on the immunomodulation of allogeneic and autologous MSCs in IUA therapy, with the aim of proving that the use of autologous MSCs can reduce the possibility of immune rejection in the treatment of IUAs.
Collapse
Affiliation(s)
- Jia-Ming Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qiao-Yi Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yun-Xia Zhao
- Department of Gynaecology and Obstetrics, Shenzhen Hospital of University of Hong Kong, Shenzhen, China
| | - Wei-Hong Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Qi-Yang Shi
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
38
|
Liao Z, Liu C, Wang L, Sui C, Zhang H. Therapeutic Role of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Female Reproductive Diseases. Front Endocrinol (Lausanne) 2021; 12:665645. [PMID: 34248842 PMCID: PMC8261239 DOI: 10.3389/fendo.2021.665645] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Reproductive disorders, including intrauterine adhesion (IUA), premature ovarian insufficiency (POI), and polycystic ovary syndrome (PCOS), are great threats to female reproduction. Recently, mesenchymal stem cells derived-extracellular vesicles (MSC-EVs) have presented their potentials to cure these diseases, not only for the propensity ability they stemmed from the parent cells, but also for the higher biology stability and lower immunogenicity, compared to MSCs. EVs are lipid bilayer complexes, functional as mediators by transferring multiple molecules to recipient cells, such as proteins, microRNAs, lipids, and cytokines. EVs appeared to have a therapeutic effect on the female reproductive disorder, such as repairing injured endometrium, suppressing fibrosis of endometrium, regulating immunity and anti-inflammatory, and repressing apoptosis of granulosa cells (GCs) in ovaries. Although the underlying mechanisms of MSC-EVs have reached a consensus, several theories have been proposed, including promoting angiogenesis, regulating immunity, and reducing oxidate stress levels. In the current study, we summarized the current knowledge of functions of MSC-EVs on IUA, POI, and PCOS. Given the great potentials of MSC-EVs on reproductive health, the critical issues discussed will guide new insights in this rapidly expanding field.
Collapse
Affiliation(s)
| | - Chang Liu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Cong Sui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanwang Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Recent Advances in Understandings Towards Pathogenesis and Treatment for Intrauterine Adhesion and Disruptive Insights from Single-Cell Analysis. Reprod Sci 2020; 28:1812-1826. [PMID: 33125685 PMCID: PMC8189970 DOI: 10.1007/s43032-020-00343-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022]
Abstract
Intrauterine adhesion is a major cause of menstrual irregularities, infertility, and recurrent pregnancy losses and the progress towards its amelioration and therapy is slow and unsatisfactory. We aim to summarize and evaluate the current treatment progress and research methods for intrauterine adhesion. We conducted literature review in January 2020 by searching articles at PubMed on prevention and treatment, pathogenesis, the repair of other tissues/organs, cell plasticity, and the stem cell–related therapies for intrauterine adhesion. A total of 110 articles were selected for review. Uterine cell heterogeneity, expression profile, and cell-cell interaction were investigated based on scRNA-seq of uterus provided by Human Cell Landscape (HCL) project. Previous knowledge on intrauterine adhesion (IUA) pathogenesis was mostly derived from correlation studies by differentially expressed genes between endometrial tissue of intrauterine adhesion patients/animal models and normal endometrial tissue. Although the TGF-β1/SMAD pathway was suggested as the key driver for IUA pathogenesis, uterine cell heterogeneity and distinct expression profile among different cell types highlighted the importance of single-cell investigations. Cell-cell interaction in the uterus revealed the central hub of endothelial cells interacting with other cells, with endothelial cells in endothelial to mesenchymal transition and fibroblasts as the strongest interaction partners. The potential of stem cell–related therapies appeared promising, yet suffers from largely animal studies and nonstandard study design. The need to dissect the roles of endometrial cells, endothelial cells, and fibroblasts and their interaction is evident in order to elucidate the molecular and cellular mechanisms in both intrauterine adhesion pathogenesis and treatment.
Collapse
|