1
|
Jin F, Yan Y, Ye Z, Wang L, Deng C, Jiang J, Dong K. CDR1as Deficiency Prevents Photoreceptor Degeneration by Regulating miR-7a-5p/α-syn/Parthanatos Pathway in Retinal Detachment. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:293-305. [PMID: 39566824 DOI: 10.1016/j.ajpath.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
Retinal detachment (RD) is the separation of the neural retina from the retinal pigment epithelium, with photoreceptor degeneration being a major cause of irreversible vision loss. Herein, ischemia and hypoxia after RD decreased the level of miR-7a-5p (miR-7) and promoted the expression of its main target, α-synuclein (α-syn), which activated the parthanatos pathway and led to photoreceptor damage. Circular RNA CDR1as is an antisense transcript of cerebellar degeneration-associated protein 1, which functions as a "sponge" for miR-7, thereby regulating the abundance and activity of miR-7. In this study, CDR1as expression was elevated after RD. Adeno-associated virus serotype 9 vector containing the shRNA-CDR1as sequence was used to inhibit CDR1as expression via subretinal injection. Hematoxylin and eosin staining and transmission electron microscopy revealed that the morphology and outer nuclear layer thickness of the retina were preserved and photoreceptor cell death was decreased after experimental RD in mice. Mechanistically, CDR1as deficiency significantly increased the expression of miR-7, then decreased the expression of α-syn, poly (ADP-ribose) polymerase 1, apoptosis-inducing factor, and migration inhibitory factor. Furthermore, visual function was improved as shown by Morris water maze experiments in the mouse model of RD. These findings suggest a surprisingly neuroprotective role for CDR1as deficiency, which is probably mediated by enhancing miR-7 activity and inhibiting α-syn/poly (ADP-ribose) polymerase 1/apoptosis-inducing factor pathway, thereby preventing photoreceptor degeneration.
Collapse
Affiliation(s)
- Feiyu Jin
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuanye Yan
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ziyang Ye
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lisong Wang
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Can Deng
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiazhen Jiang
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kai Dong
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
2
|
Li X, He X, Li G, Wang Z, Huang F, Chen J, Song Y, Liu T, Chen Z, Wang X, Hu J, He H, Liu H, Li L, Wang J, Hu S. Identification of the crucial circ-mi-mRNA interaction networks regulating testicular development and spermatogenesis in ganders. Poult Sci 2025; 104:104863. [PMID: 39904178 PMCID: PMC11847062 DOI: 10.1016/j.psj.2025.104863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/25/2025] [Accepted: 01/30/2025] [Indexed: 02/06/2025] Open
Abstract
Semen quality has an important impact on the reproductive performance of ganders, and the quantity and quality of spermatozoa in semen are the determinants of semen quality. In our practical work, a small number of azoospermic ganders were observed in adult goose breeding populations, but the underlying regulatory mechanisms remain unknown. In the present study, we firstly compared the morphological and histological differences in the testes of ganders from normozoospermic group (NG) and azoospermic group (AG), and then analyzed the testicular expression patterns of circRNAs, miRNAs, and mRNAs between the two groups by using whole-transcriptome sequencing technology. Results from histomorphological analysis demonstrated that the body weight alone was not accountable for the occurrence of gander azoospermia, and the possible cause might be the observed testicular abnormalities. At the morphological level, the left, right, and bilateral testicular weights, the right and bilateral testicular organ indexes, and the long, short, and dorsoventral diameters of the left, right and bilateral testes were significantly lower in AG than in NG (P < 0.05). At the histological level, most testicular histological parameters, such as the testicular parenchymal area, the diameter of seminiferous tubules, and the number of germ cells, were significantly higher (P < 0.05) in NG than in AG. The RNA-seq results showed that a total of 683 differentially expressed circRNAs (DEcircRNAs), 24 differentially expressed miRNAs (DEmiRNAs), and 1,118 differentially expressed Genes (DEGs) were identified in the gander testes between NG and AG. Subsequent functional enrichment analysis revealed that most of the DEGs and the target genes of DEcircRNAs and DEmiRNAs were significantly enriched in either the biological processes related to male gonad development, spermatid development, and regulation of cell differentiation or the KEGG terms including the MAPK, TGF-beta, Wnt, and cell cycle signaling pathways. By constructing the core ceRNA regulatory networks, several key DEcircRNAs, including 1:98100313|98104995, 1:171413706|171419341, 6:3414226|3418193, and 2:115876735|115880760, were identified to regulate the expression of TGFB2 and BCL2 through interactions with specific miRNAs such as novel-miR-265 and novel-miR-266, and such interactions could play crucial roles in regulating the gander testicular cell apoptosis, proliferation, and spermatogenesis. This study provides novel insights into the function and molecular mechanisms of ceRNAs in regulating the gander testicular development and semen quality.
Collapse
Affiliation(s)
- Xiaopeng Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiaoyong He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Guibi Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Zhujun Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Fuli Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jiasen Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yang Song
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Tanze Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Zhaoyan Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xiangfeng Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jiwei Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Hua He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Hehe Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jiwen Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Shenqiang Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, PR China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, PR China.
| |
Collapse
|
3
|
Yan Q, Wang Q. Exploring the Characters of Non-Coding RNAs in Spermatogenesis and Male Infertility. Int J Mol Sci 2025; 26:1128. [PMID: 39940895 PMCID: PMC11817410 DOI: 10.3390/ijms26031128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Infertility is a widespread clinical problem that affects human reproduction and species persistence worldwide. Around 40-70% of cases are due to male reproductive defects. Functional spermatogenesis (sperm production through several coordinated events) is at the heart of male fertility. Non-coding RNAs (ncRNAs) are the primary regulators of gene expression, controlling extensive critical cellular processes, for example proliferation, differentiation, apoptosis, and reproduction. Due to advancements in high-throughput sequencing tools, many studies have revealed that ncRNAs are widely expressed in germ cells, meiosis, spermatogenesis, sperm fertility, early post-fertilization development, and male infertility. The present review examines the biology and function of ncRNAs, including microRNAs, circular RNAs, and long ncRNAs, in spermatogenesis, their correlation with infertility, and their potential as biomarkers for sperm quality and fertility. The function of ncRNA in Sertoli cells (SCs) and Leydig cells (LCs) is also outlined throughout this study, because spermatogenesis requires testicular somatic cells to be involved in testicular development and male fertility. Meanwhile, the future development of ncRNAs for the clinical treatment of male infertility is also anticipated and discussed.
Collapse
Affiliation(s)
- Qiu Yan
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China;
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Qi Wang
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, China;
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
4
|
Song W, Chen X, Wu H, Rahimian N. Circular RNAs as a novel class of potential therapeutic and diagnostic biomarkers in reproductive biology/diseases. Eur J Med Res 2024; 29:643. [PMID: 39741306 DOI: 10.1186/s40001-024-02230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Infertility is a prevalent problem among 10% of people within their reproductive years. Sometimes, even advanced treatment options like assisted reproduction technology have the potential to result in failed implantation. Because of the expected changes in gene expression during both in vitro and in vivo fertilization processes, these methods of assisting fertility have also been associated with undesirable pregnancy outcomes related to infertility. In this aspect, Circular RNAs (circRNAs) play a crucial role as epigenetic modifiers in a wide range of biological and pathological activities, including problems with fertility. CircRNAs are integral pieces in multiple cellular functions, including moving substances within the nucleus, silencing one X chromosome, cell death, the ability of stem cells to differentiate into different cell types, and the process of gene expression inherited from parental genes. Due to the progress made in high-speed gene sequencing, a large amount of circRNA molecules have been detected, revealing their significant functions in diverse biological functions like enhancing testicular development, preserving the differentiation and renewal of spermatogonial cells, and controlling spermatocyte meiosis. Moreover, these non-coding RNAs contribute in different aspects of female reproductive system including pregnancy-related diseases, gynecologic cancers, and endometriosis. In conclusion, there is no denying that circRNAs have immense potential to be used as biomarkers and treatments for reproductive disorders in males and females. In this research, we provide a comprehensive analysis of the multiple circRNAs associated with women's infertility.
Collapse
Affiliation(s)
- Wanyu Song
- Department of Obstetrics, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Xiuli Chen
- Department of Obstetrics, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Haiying Wu
- Department of Obstetrics, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
- People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.
| | - Neda Rahimian
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Tirpak F, Hamilton LE, Schnabel RD, Sutovsky P. Biomarker-based high-throughput sperm phenotyping: Andrology in the age of precision medicine and agriculture. Anim Reprod Sci 2024; 271:107636. [PMID: 39522272 DOI: 10.1016/j.anireprosci.2024.107636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Reproductive efficiency is crucial for animal agriculture. This economically important aspect can be influenced by environmental burdens, nutritional imbalance, and gonadal or gametic malformations of genetic origin. Successful implementation of genomic-driven selective breeding in cattle depends on the reproductive performance of artificial insemination (AI) sires with valuable genomic production traits. Reproduction is traditionally viewed as a complex set of polygenic traits that are negatively impacted by using a small number of often closely related sires selected for AI due to their superior genetics. Despite recent progress, it remains difficult to define relationships between sire genome and variation in sperm phenotypes, even though several types of heritable, non-compensable sperm defects have been identified. In this review, we discuss the concept of sperm quality biomarker discovery and genomics of male fertility. We also outline a multidisciplinary genome-to-phenome approach for investigating heritable mutations and their impacts on bull fertility, sperm phenotypes and paternal contributions to early pregnancy. High-precision phenotyping requires novel, state-of-the-art instrumentation for sperm quality evaluation and development of new biomarkers of sperm quality in farm animals, with potential for incorporation into andrology-specific machine learning protocols and translation to human andrology. We conclude that reproduction is a complex phenotype that can be deciphered and explored for more precise male fertility evaluation and higher reproductive efficiency.
Collapse
Affiliation(s)
- Filip Tirpak
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Lauren E Hamilton
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA; Genetics Area Program, University of Missouri, Columbia, MO, USA
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA; Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
6
|
Babakhanzadeh E, Hoseininasab FA, Khodadadian A, Nazari M, Hajati R, Ghafouri-Fard S. Circular RNAs: novel noncoding players in male infertility. Hereditas 2024; 161:46. [PMID: 39551760 PMCID: PMC11572108 DOI: 10.1186/s41065-024-00346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024] Open
Abstract
Infertility is a global problem being associated with emotional and financial burden. Recent studies have shown contribution of a group of non-coding RNAs, namely circular RNAs (circRNAs) to the etiology of some infertility conditions. CircRNA are transcribed from exons and form a circular RNA molecule, being abundant in eukaryotes. Traditionally classified as non-coding RNA, these transcripts are endogenously produced through either non-canonical back-splicing or linear splicing, typically produced from precursor messenger ribonucleic acid (pre-mRNA). While during the canonical splicing process the 3' end of the exon is joined to the 5' end of the succeeding exon to form linear mRNA, during backsplicing, the 3' end to the 5' end of the same exon is joined to make a circular molecule. circRNAs are involved in the regulation of several aspects of spermatogenesis. They appear to influence how stem germ cells grow and divide during the sperm production process. Malfunctions in circRNA activity could contribute to male infertility issues stemming from abnormalities in spermatogenesis. In the current review, we highlight the exciting potential of circRNAs as key players in the male fertility.
Collapse
Affiliation(s)
- Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Ali Khodadadian
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Reza Hajati
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Sudhakaran G, Kesavan D, Kandaswamy K, Guru A, Arockiaraj J. Unravelling the epigenetic impact: Oxidative stress and its role in male infertility-associated sperm dysfunction. Reprod Toxicol 2024; 124:108531. [PMID: 38176575 DOI: 10.1016/j.reprotox.2023.108531] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Male infertility is a multifactorial condition influenced by epigenetic regulation, oxidative stress, and mitochondrial dysfunction. Oxidative stress-induced damage leads to epigenetic modifications, disrupting gene expression crucial for spermatogenesis and fertilization. Paternal exposure to oxidative stress induces transgenerational epigenetic alterations, potentially impacting male fertility in offspring. Mitochondrial dysfunction impairs sperm function, while leukocytospermia exacerbates oxidative stress-related sperm dysfunction. Therefore, this review focuses on understanding these mechanisms as vital for developing preventive strategies, including targeting oxidative stress-induced epigenetic changes and implementing lifestyle modifications to prevent male infertility. This study investigates how oxidative stress affects the epigenome and sperm production, function, and fertilization. Unravelling the molecular pathways provides valuable insights that can advance our scientific understanding. Additionally, these findings have clinical implications and can help to address the significant global health issue of male infertility.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - D Kesavan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India
| | - Karthikeyan Kandaswamy
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
8
|
Sahlu BW, Wang H, Hu Z, Heng N, Gong J, Wang H, Zhu H, Zhao S. Identification of a circRNA-miRNA-mRNA network to explore the effects of circRNAs on Holstein bull testis after sexual maturity. Anim Reprod Sci 2023; 258:107360. [PMID: 39492239 DOI: 10.1016/j.anireprosci.2023.107360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
Spermatogenesis is an extremely sophisticated and complex process and is regulated not only by a large number of genes, but also by a large number of epigenetic factors. Although existing studies have demonstrated that circRNAs plays an important regulatory role in spermatogenesis, there is still insufficient information to properly understand the regulatory role and mechanism of circRNA action. We addressed this issue by examining the testes of two Holstein bull developmental stages; three 8-week-olds (young bull, YB) and three 80-week-olds (adult bull, AB), randomly selected from the same breeding stock. A total of 3032 circRNAs, 683 miRNAs were identified as significantly differentially expressed noncoding RNAs, and 14,081 mRNAs. Based on these results, a circRNA-miRNA-mRNA competing endogenous RNA (ceRNA) regulatory network was constructed containing 3298 targeted regulatory axes. Modular analysis revealed a total of four modules in the ceRNA regulatory network. Functional analysis of these results showed that the ceRNA regulatory network in AB testis exhibited more positive regulatory effects on the spermatogenesis cycle checkpoints, chromosome and cytoplasm segregation, sperm tail formation, and sperm motility. In addition, screening combining the results of our previous studies on lncRNA regulation of spermatogenesis revealed 4 genes (FOXO4, PPP1CB, CDC26, and CDKN1B) that co-exist in the 2 ceRNA regulatory networks, lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA. A ceRNA regulatory network was constructed based on these genes. This study demonstrated the possible regulatory role of circRNAs in adult testicular spermatogenesis based on constructed transcriptome profiles and furtzher broadened our understanding of the regulatory role of circRNAs in spermatogenesis.
Collapse
Affiliation(s)
- Bahlibi Weldegebriall Sahlu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Tigray Agricultural Research Institute, Mekelle Agricultural Research Center, Mekelle, Ethiopia
| | - Huan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhihui Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nuo Heng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianfei Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haoyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huabin Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shanjiang Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
9
|
Li J, Yang F, Dong L, Chang D, Yu X. Seminal plasma biomarkers for predicting successful sperm retrieval in patients with nonobstructive azoospermia: a narrative review of human studies. Basic Clin Androl 2023; 33:9. [PMID: 37076787 PMCID: PMC10116801 DOI: 10.1186/s12610-023-00184-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/08/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Non-obstructive azoospermia (NOA) is considered to be the most severe form of male infertility. Before the emergence of surgical testicular sperm extraction and assisted reproductive technology, NOA patients could hardly become biological fathers of their children. However, failure of the surgery could cause physical and psychological harm to patients such as testicular damage, pain, hopeless of fertility and additional cost. Therefore, predicting the successful sperm retrieval (SSR) is so important for NOA patients to make their choice whether to do the surgery or not. Because seminal plasma is secreted by the testes and accessory gonads, it can reflect the spermatogenic environment, making it a preferential choice for SSR valuation. The purpose of this paper is to summarize the available evidence and provide the reader with a broad overview of biomarkers in seminal plasma for SSR prediction. RESULTS A total of 15,390 studies were searched from PUBMED, EMBASE, CENTRAL and Web of Science, but only 6615 studies were evaluated after duplications were removed. The abstracts of 6513 articles were excluded because they were irrelevant to the topic. The full texts of 102 articles were obtained, with 21 of them being included in this review. The included studies range in quality from medium to high. In the included articles, surgical sperm extraction methods included conventional testicular sperm extraction (TESE) and microdissection testicular sperm extraction (micro-TESE). Currently, the biomarkers in seminal plasma used to predict SSR are primarily RNAs, metabolites, AMH, inhibin B, leptin, survivin, clusterin, LGALS3BP, ESX1, TEX101, TNP1, DAZ, PRM1 and PRM2. CONCLUSION The evidence does not conclusively indicate that AMH and INHB in seminal plasma are valuable to predict the SSR. It is worth noting that RNAs, metabolites and other biomarkers in seminal plasma have shown great potential in predicting SSR. However, existing evidence is insufficient to provide clinicians with adequate decision support, and more prospective, large sample size, and multicenter trials are urgently needed.
Collapse
Affiliation(s)
- Junjun Li
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, 611130, Chengdu, China
| | - Fang Yang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu, University of Traditional Chinese Medicine, 610072, Chengdu, China
| | - Liang Dong
- The Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, 610041, Chengdu, China
| | - Degui Chang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu, University of Traditional Chinese Medicine, 610072, Chengdu, China
| | - Xujun Yu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| |
Collapse
|
10
|
Li N, Dong X, Fu S, Wang X, Li H, Song G, Huang D. C-Type Natriuretic Peptide (CNP) Could Improve Sperm Motility and Reproductive Function of Asthenozoospermia. Int J Mol Sci 2022; 23:ijms231810370. [PMID: 36142279 PMCID: PMC9499393 DOI: 10.3390/ijms231810370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
This study is to analyze the effect of C-type natriuretic peptide (CNP) on sperm motility of asthenozoospermia and explore the influence mechanism of CNP on the reproductive system and sperm motility. Our results showed that the concentration of CNP in asthenospermia patients’ semen was lower than in normal people’s. The motility of sperm could be improved markedly by CNP and 8-Br-cGMP, while the effect of CNP was inhibited by NPR-B antagonist and KT5823. In the asthenozoospermia mouse model induced by CTX, CNP injection could improve sperm motility in the epididymis, alleviate tissue damage in the testes and epididymis, and increase testosterone levels. The asthenospermia mouse model showed high activity of MDA and proinflammatory factors (TNF-α, IL-6), as well as low expression of antioxidants (SOD, GSH-Px, CAT) in the testis and epididymis, but this situation could be significantly ameliorated after being treated with CNP. Those studies indicated that the concentration of CNP in the semen of asthenospermia patients is lower than in normal people and could significantly promote sperm motility through the NPR-B/cGMP pathway. In the asthenospermia mouse model induced by CTX, CNP can alleviate the damage of cyclophosphamide to the reproductive system and sperm motility. The mechanism may involve increasing testosterone and reducing ROS and proinflammatory factors to damage the tissue and sperm.
Collapse
Affiliation(s)
- Na Li
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinyi Dong
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sen Fu
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoyan Wang
- Reproductive Center, Qingdao Women and Children’s Hospital Affiliated to Qingdao University, Qingdao 266034, China
| | - Huaibiao Li
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ge Song
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou 510006, China
- Correspondence: (G.S.); (D.H.); Tel.: +86-13570493366 (G.S.); +86-18872262607 (D.H.)
| | - Donghui Huang
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Huazhong University of Science and Technology, Shenzhen 518109, China
- Correspondence: (G.S.); (D.H.); Tel.: +86-13570493366 (G.S.); +86-18872262607 (D.H.)
| |
Collapse
|
11
|
Shi S, Wang T, Wang L, Wang M. Nomogram based on a circular RNA biomarker for predicting the likelihood of successful sperm retrieval via microdissection testicular sperm extraction in patients with idiopathic non-obstructive azoospermia. Front Endocrinol (Lausanne) 2022; 13:1109807. [PMID: 36733803 PMCID: PMC9886672 DOI: 10.3389/fendo.2022.1109807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/26/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Many circular RNAs (circRNAs) are specifically expressed in the testes and seminal plasma of patients with non-obstructive azoospermia (NOA), highlighting them as potential predictors of microdissection testicular sperm extraction (micro-TESE) outcomes. Although research has indicated that circular RNA monoglyceride lipase (circ_MGLL) is highly expressed in the testicular tissues of patients with NOA, the association between circ_MGLL expression and sperm retrieval outcomes (SROs) in patients with idiopathic non-obstructive azoospermia (iNOA) receiving micro-TESE remains unclear. METHODS This single-center, retrospective cohort study enrolled 114 patients with iNOA who underwent micro-TESE at Northwest Women's and Children's Hospital from January 2017 to November 2021. A logistic regression model was used to examine associations between SRO and circ_MGLL expression in testicular tissues, the results of which were used in conjunction with previous findings to establish a nomogram. The predictive performance of the circ_MGLL-based nomogram was evaluated via calibration curves, receiver operating characteristic curves, and decision curve analysis (DCA) using an internal validation method. RESULTS The generalized additive model indicated that the probability of successful SRO for micro-TESE decreased as circ_MGLL expression increased in testicular tissues. Across the entire cohort, univariate logistic regression analysis revealed that circ_MGLL expression was inversely associated with SRO in patients with NOA. This trend did not change after stratification according to age, body mass index, testicular volume, follicle-stimulating hormone (FSH) level, luteinizing hormone (LH) level, testosterone (T) level, or pathological type (or after adjusting for these confounders) (odds ratio <1, P < 0.001). A nomogram was then generated by integrating circ_MGLL, pathological types, and FSH, LH, and T levels. The circ_MGLL-based predictive model achieved satisfactory discrimination, with an area under the curve of 0.857, and the calibration curves demonstrated impressive agreement. The DCA indicated that the net clinical benefit of the circ_MGLL-based predictive model was greater than that of circ_MGLL alone. CONCLUSION circ_MGLL is significantly associated with the SRO of micro-TESE in patients with iNOA. The circ_MGLL-based nomogram developed in the current study can predict successful SRO with high accuracy.
Collapse
Affiliation(s)
- Shengjia Shi
- Reproductive Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Tianwei Wang
- Reproductive Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Lei Wang
- Reproductive Center, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Mingjuan Wang
- Department of Pathology, Northwest Women’s and Children’s Hospital, Xi’an, China
- *Correspondence: Mingjuan Wang,
| |
Collapse
|